Revival studies of Aeropyrum pernix show that the viability of cells and cell recovery after heat treatment depends on the temperature of treatment. Differential scanning calorimetry (DSC) is used to analyze the relative thermal stabilities of cellular components of A. pernix and to identify the cellular components responsible for the observed lag phase and reduced maximum growth following a heat treatment. DSC thermograms show 5 visible endothermic transitions with 2 major transitions. DSC analysis of isolated crude ribosomes aids the assignment of the 2 major peaks observed in whole-cell thermograms to denaturation of ribosomal structures. A comparison of partial and immediate full rescan thermograms of A. pernix whole cells indicates that both major peaks represent irreversible thermal transitions. A DNA peak is also identified in the whole-cell thermogram by comparison with the optical data of isolated pure DNA. DNA melting is shown to be irreversible in dilute solution, whereas it is partially reversible in whole cells, owing at least in part, to restricted volume effects. In contrast to mesophilic organisms, hyperthermophilic A. pernix ribosomes are more thermally stable than DNA, but in both organisms, irreversible changes leading to cell death occur owing to ribosomal denaturation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/W07-069 | DOI Listing |
Cell Prolif
January 2025
Department of Nursing, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.
Vasculogenic mimicry (VM) represents a novel form of angiogenesis discovered in numerous malignant tumours in recent years. Unlike traditional angiogenesis, VM facilitates tumour blood supply independently of endothelial cells by enabling tumour cells to form functional vascular networks. This phenomenon, where tumour cells replace endothelial cells to form tubular structures, plays a pivotal role in tumour growth and metastasis.
View Article and Find Full Text PDFTransfus Med
January 2025
Research and Development, Finnish Red Cross Blood Service, Vantaa, Finland.
Background: Extracellular vesicles (EVs) have procoagulative properties. As EVs are known to accumulate in stored blood products, we compared the EV content and coagulation capacity of leukoreduced cold-stored whole blood (CSWB) with current prehospital and in-hospital component therapies to understand the role of EVs in the haemostatic capacity of ageing CSWB.
Materials And Methods: Blood was obtained from 12 O RhD-positive male donors.
J Nanobiotechnology
January 2025
Department of Biomedical Engineering, China Medical University, Taichung, 406040, Taiwan.
Diabetic wounds are characterized by chronic inflammation, reduced angiogenesis, and insufficient collagen deposition, leading to impaired healing. Extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ADSC) offer a promising cell-free therapeutic strategy, yet their efficacy and immunomodulation can be enhanced through bioactivation. In this study, we developed calcium silicate (CS)-stimulated ADSC-derived EVs (CSEV) incorporated into collagen hydrogels to create a sustained-release system for promoting diabetic wound healing.
View Article and Find Full Text PDFCancer Cell Int
January 2025
Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
Background: Mounting evidence underline the relevance of macromolecular complexes in cancer. Integrins frequently recruit ion channels and transporters within complexes which behave as signaling hubs. A complex composed by β1 integrin, hERG1 K channel, the neonatal form of the Na channel Na 1.
View Article and Find Full Text PDFNat Commun
January 2025
Cluster of Excellence Physics of Life, TUD Dresden University of Technology, 01062, Dresden, Germany.
Cilia assembly and function rely on the bidirectional transport of components between the cell body and ciliary tip via Intraflagellar Transport (IFT) trains. Anterograde and retrograde IFT trains travel along the B- and A-tubules of microtubule doublets, respectively, ensuring smooth traffic flow. However, the mechanism underlying this segregation remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!