Our understanding of how the enormously complex task of interconnecting millions of nerve cells is accomplished remains rudimentary. What molecular mechanisms control its exquisite specificity? Can we pinpoint single molecular interactions that might help to explain some of the specificity requirements that underlie neuronal wiring? A series of recent studies on the molecular diversity of the Drosophila melanogaster cell-surface receptor Down syndrome cell-adhesion molecule (Dscam) provide one exceptional example of a novel mechanistic model of neuronal-wiring specificity, progressing from structural studies of single protein-protein interactions to biochemical analysis in vitro and to an understanding of complex neuronal differentiation at the single-cell or tissue levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nrn2256 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!