Liquid-crystal materials find a new order in biomedical applications.

Nat Mater

Department of Physics, Brown University, Providence, RI 02912, USA.

Published: December 2007

With the maturation of the information display field, liquid-crystal materials research is undergoing a modern-day renaissance. Devices and configurations based on liquid-crystal materials are being developed for spectroscopy, imaging and microscopy, leading to new techniques for optically probing biological systems. Biosensors fabricated with liquid-crystal materials can allow label-free observations of biological phenomena. Liquid-crystal polymers are starting to be used in biomimicking colour-producing structures, lenses and muscle-like actuators. New areas of application in the realms of biology and medicine are stimulating innovation in basic and applied research into these materials.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nmat2010DOI Listing

Publication Analysis

Top Keywords

liquid-crystal materials
16
liquid-crystal
5
materials find
4
find order
4
order biomedical
4
biomedical applications
4
applications maturation
4
maturation display
4
display field
4
field liquid-crystal
4

Similar Publications

Spatially programmed alignment and actuation in printed liquid crystal elastomers.

Proc Natl Acad Sci U S A

January 2025

John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138.

Liquid crystal elastomers (LCEs) exhibit reversible shape morphing behavior when cycled above their nematic-to-isotropic transition temperature. During extrusion-based 3D printing, LCE inks are subjected to coupled shear and extensional flows that can be harnessed to spatially control the alignment of their nematic director along prescribed print paths. Here, we combine experiment and modeling to elucidate the effects of ink composition, nozzle geometry, and printing parameters on director alignment.

View Article and Find Full Text PDF

The current intense study of ferroelectric nematic liquid crystals was initiated by the observation of the same ferroelectric nematic phase in two independently discovered organic, rod-shaped, mesogenic compounds, RM734 and DIO. We recently reported that the compound RM734 also exhibits a monotropic, low-temperature, apolar phase having reentrant isotropic symmetry (the I phase), the formation of which is facilitated to a remarkable degree by doping with small (below 1%) amounts of the ionic liquid BMIM-PF. Here we report similar phenomenology in DIO, showing that this reentrant isotropic behavior is not only a property of RM734 but is rather a more general, material-independent feature of ferroelectric nematic mesogens.

View Article and Find Full Text PDF

The utilization of liquid crystals (LC) as materials has enabled the enlargement of lenses with the potential to alter their focus. Tunable LC lenses with adjustable focus are essential for optical imaging, sensing, and detection devices. This technology offers many benefits, such as the ability to adjust focus, operate with low power, and be easily made.

View Article and Find Full Text PDF

A General Strategy for Controllable Preparation of Nano-CaCO.

Langmuir

January 2025

State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.

Controllable preparation of inorganic nanomaterials with specific morphology and structure is very important for their applications in various fields. Herein, a general strategy was proposed to controllably synthesize nano-CaCO via a water-in-oil microemulsion method in the rotating packed bed reactor. By tuning key parameters, nano-CaCO with four primarily analyzed morphologies, including spherical, spindle-like, clustered, or linear formations, can be selectively obtained.

View Article and Find Full Text PDF

Interfacial mechanisms of enhanced photoluminescence in AgI-doped red light emitting perovskite quantum dot glass.

J Colloid Interface Sci

January 2025

Institute of Optoelectronic Materials and Devices, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 PR China. Electronic address:

Red light emitting perovskite quantum dot (PQD) glass, with narrow-band emission and excellent stability, holds great potential for applications in liquid crystal displays. However, its low photoluminescence quantum yield (PLQY) remains the biggest obstacle limiting its practical application. Additionally, the mechanism behind the enhancement of the PLQY is not well understood, which restricts the further improvement of the PLQY in red light emitting PQD glass.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!