A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Statistical optimization of conditions for protease production from Bacillus sp. and its scale-up in a bioreactor. | LitMetric

A statistical approach, response surface methodology (RSM), was used to study the production of extracellular protease from Bacillus sp., which has properties of immense industrial importance. The most influential parameters for protease production obtained through the method of testing the parameters one at a time were starch, soybean meal, CaCl2, agitation rate, and inoculum density. This method resulted in the production of 2543 U/mL of protease in 48 h from Bacillus sp. Based on these results, face-centered central composite design falling under RSM was employed to further enhance protease activity. The interactive effect of the most influential parameters resulted in a 1.50-fold increase in protease production, yielding 3746 U/mL in 48 h. Analysis of variance showed the adequacy of the model and verification experiments confirmed its validity. On subsequent scale-up in a 30-L bioreactor using conditions optimized through RSM, 3978 U/mL of protease was produced in 18 h. This clearly indicated that the model remained valid even on a large scale. RSM is a quick process for optimization of a large number of variables and provides profound insight into the interactive effect of various parameters involved in protease production.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02729064DOI Listing

Publication Analysis

Top Keywords

protease production
16
protease
8
protease bacillus
8
influential parameters
8
u/ml protease
8
production
6
statistical optimization
4
optimization conditions
4
conditions protease
4
production bacillus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!