Objectives: Precision grasping critically relies on the integrity of the corticospinal tract as evidenced in congenital hemiplegia by the correlation found between corticospinal dysgenesis and hand-movement deficits. Therefore, corticospinal dysgenesis could be used to anticipate upper-limb deficits in young infants with congenital hemiplegia. However, most studies have quantified corticospinal dysgenesis by measuring the cross-sectional area of cerebral peduncles on T1 MRI, a measure biased by other structures present in the peduncles. The purpose of this study was to evaluate the extent to which this may have hampered the conclusions of previous studies. We also aimed to investigate the relationship between upper-limb deficits and a more accurate measure of corticospinal dysgenesis to provide a tool for anticipating upper-limb deficits in infants with congenital hemiplegia.

Methods: To address this issue, we measured corticospinal tract areas in 12 patients with congenital hemiplegia and 12 matched control subjects by using the diffusion tensor imaging technique. Corticospinal dysgenesis was quantified by computing a symmetry index between the area of the contralateral and ipsilateral corticospinal tracts. This value was then compared with that resulting from the conventional MRI method.

Results: The symmetry indexes gathered with these 2 methods were highly correlated, although the diffusion tensor imaging symmetry indexes were significantly smaller. This indicates that, in patients with congenital hemiplegia, the conventional MRI measurement has led to a systematic underestimate of corticospinal dysgenesis. These 2 estimates of corticospinal dysgenesis were also correlated with upper-limb impairments and disabilities. Although the symmetry index computed from peduncle measurements was correlated solely with deficits in stereognosis, the diffusion tensor imaging index correlated with stereognosis, digital and manual dexterities, and ABILHAND-Kids, a measure of manual ability in daily life activities.

Conclusions: The diffusion tensor imaging symmetry index provides a useful prognostic tool for anticipating upper-limb deficits and their consequences in daily life activities.

Download full-text PDF

Source
http://dx.doi.org/10.1542/peds.2007-0394DOI Listing

Publication Analysis

Top Keywords

corticospinal dysgenesis
32
upper-limb deficits
20
congenital hemiplegia
20
diffusion tensor
20
tensor imaging
20
corticospinal
11
corticospinal tract
8
infants congenital
8
tool anticipating
8
anticipating upper-limb
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!