Immunological techniques and high-resolution FRET analysis were employed to investigate the in vivo colocalization and interaction of phosducin (Pdc) with the betagamma-subunits of G-protein (Gbetagamma) in the ciliate Blepharisma japonicum. Immunological techniques revealed that illumination of cells resulted in a decrease in phosphorylation levels of Pdc and its colocalization with Gbetagamma. The observed light-induced Pdc dephosphorylation was also accompanied by significant enhancement of Gbetagamma binding by this molecule. Possible formation of the Pdc-Gbetagamma complex in cells exposed to light was corroborated by FRET between these proteins. Treatment of cells with okadaic acid, an inhibitor of phosphatase activity, entirely prevented Pdc dephosphorylation by light, colocalization of this phosphoprotein with Gbetagamma and generation of the Pdc-Gbetagamma complex. Cell fractionation and immunoblotting revealed that in cells exposed to light, the formation of Pdc-Gbetagamma complex and its translocation into the cytoplasm occur simultaneously with a change in the gel migration of Gbeta. Moreover, a 33 kDa immunoanalog of 14-3-3 protein was identified and we showed that this protein is bound by phosphorylated Pdc in a cell adapted to darkness. The results of this study provide additional detailed characterization of the functional properties of the ciliate Pdc. The likely functional role of Pdc in Blepharisma is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.005132 | DOI Listing |
Photochem Photobiol Sci
August 2010
Department of Cell Biology, Nencki Institute of Experimental Biology, Warsaw, Poland.
Blepharisma japonicum ciliates display reversible cell elongation in response to lasting bright illumination. This light-induced phenomenon has been ascribed to the active sliding of the cortical microtubules of the ciliate. The detailed intracellular signaling pathway that activates the microtubule network in response to light, resulting in cell elongation, is unknown.
View Article and Find Full Text PDFJ Exp Biol
December 2007
Department of Cell Biology, Nencki Institute of Experimental Biology, 3 Pasteur Street, PL-02-093 Warsaw, Poland.
Biochemistry
May 2004
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA.
Phosducin (Pdc) and phosducin-like protein (PhLP) regulate G protein-mediated signaling by binding to the betagamma subunit complex of heterotrimeric G proteins (Gbetagamma) and removing the dimer from cell membranes. The binding of Pdc induces a conformational change in the beta-propeller structure of Gbetagamma, creating a pocket between blades 6 and 7. It has been proposed that the isoprenyl group of Gbetagamma inserts into this pocket, stabilizing the Pdc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!