Starch phosphorylation catalysed by the alpha-glucan, water dikinases (GWD) has profound effects on starch degradation in plants. The Arabidopsis thaliana genome encodes three isoforms of GWD, two of which are localized in the chloroplast and are involved in the degradation of transient starch. The third isoform, termed AtGWD2 (At4g24450), was heterologously expressed and purified and shown to have a substrate preference similar to potato GWD. Analyses of AtGWD2 null mutants did not reveal any differences in growth or starch and sugar levels, when compared to the wild type. Subcellular localization studies in Arabidopsis leaves and in vitro chloroplast import assays indicated that AtGWD2 was not targeted to the chloroplasts. The AtGWD2 promoter showed a highly restricted pattern of activity, both spatially and temporally. High activity was observed in the companion cells of the phloem, with expression appearing just before the onset of senescence. Taken together, these data indicate that, although AtGWD2 is capable of phosphorylating alpha-glucans in vitro, it is not directly involved in transient starch degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/erm249 | DOI Listing |
Plant Physiol Biochem
January 2025
Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China. Electronic address:
As an important starch crop, sweet potato has significant practical importance for maintaining food security worldwide. This study identified differential expressed genes associated with the expansion of tuberous roots by comparing the transcriptome across tuberous roots at the initial period (initiated tuberous roots (ITRs), rapid expansion period (tuberous roots (TRs), fibrous roots (FRs) at the seedling stage, and fibrous roots at the adult stage (unexpanded FRs (UFRs)). sRNA-seq and degradome analyses were performed to reveal the role of miRNAs in tuberous root development in sweet potato.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Jiangsu Key Laboratory of Crop Genetics and Physiology/ State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Key Laboratory of Plant Functional Genomics, Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Center for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia. Electronic address:
Plants produce storage and transient starches in seeds and in leaves, respectively. Understanding molecular fine structure and synthesis of transient starch can help improve plant quality (e.g.
View Article and Find Full Text PDFAesthetic Plast Surg
January 2025
Department of Plastic, Reconstructive and Aesthetic Surgery, Academic Hospital Feldkirch, Carinagasse 47, 6807, Feldkirch, Austria.
Introduction: Primary axillary hyperhidrosis significantly impacts the quality of life of affected individuals. miraDry, a non-invasive local precisely controlled thermal energy procedure, represents a promising treatment option. This retrospective analysis aimed to evaluate the treatment success and patient safety following miraDry procedure in the treatment of primary axillary hyperhidrosis.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
School of Horticulture and Gardens, Yangzhou University, Yangzhou, 225009, China.
NnNAC100-NnSBEII modules enhance starch content of the rhizome in Nelumbo nucifera Gaertn. Nelumbo nucifera Gaertn. is a popular aquatic vegetable and traditional Chinese medicine whose quality and taste are mainly determined by the starch.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, People's Republic of China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China; NFGA Engineering Research Center for Torreya grandis 'Merrillii', Zhejiang A&F University, Hangzhou, People's Republic of China. Electronic address:
Foliar fertilizers quickly replenish nutrients for plant growth, boosting production and quality. However, how this affects metabolite accumulation in fruits is unclear. In this study, the metabolome and transcriptome of Torreya grandis seeds were investigated after five different foliar fertilizer treatments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!