Breaking the diffraction barrier outside of the optical near-field with bright, collimated light from nanometric apertures.

Proc Natl Acad Sci U S A

Department of Biochemistry and Molecular Pharmacology and Technology Engineering Center, Harvard Medical School, Boston, MA 02115, USA.

Published: November 2007

The optical diffraction limit has been the dominant barrier to achieving higher optical resolution in the fields of microscopy, photolithography, and optical data storage. We present here an approach toward imaging below the diffraction barrier. Through the exposure of photosensitive films placed a finite and known distance away from nanoscale, zero-mode apertures in thin metallic films, we show convincing, physical evidence that the propagating component of light emerging from these apertures shows a very strong degree of collimation well past the maximum extent of the near-field (lambda(0)/4n-lambda(0)/2n). Up to at least 2.5 wavelengths away from the apertures, the transmitted light exhibits subdiffraction limit irradiance patterns. These unexpected results are not explained by standard diffraction theory or nanohole-based "beaming" rationalizations. This method overcomes the diffraction barrier and makes super-resolution fluorescence imaging practical.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2141880PMC
http://dx.doi.org/10.1073/pnas.0709701104DOI Listing

Publication Analysis

Top Keywords

diffraction barrier
12
breaking diffraction
4
barrier
4
optical
4
barrier optical
4
optical near-field
4
near-field bright
4
bright collimated
4
collimated light
4
light nanometric
4

Similar Publications

Simultaneously improving tabletability and solubility of diclofenac by cocrystallization with picolinamide.

Int J Pharm

January 2025

NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Hygiene Inspection & Quarantine Science, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China. Electronic address:

Diclofenac (DIC) is a nonsteroidal anti-inflammatory drug with poor tabletability and water solubility. In the present study, a new diclofenac-picolinamide cocrystal (DIC-PIC) was prepared to simultaneously improve its tabletability and solubility. The cocrystal was characterized using multiple techniques, such as X-ray diffraction, thermal methods and spectral analyses.

View Article and Find Full Text PDF

Silanediol-Bay-Bridge Rigidified Axially Chiral Perylene Bisimide.

J Org Chem

January 2025

Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany.

Chiral organic molecules with a complementing π-structure are highly desired to obtain materials with good semiconducting properties and pronounced chirality effects in the visible region. Herein, we introduce a novel design strategy to achieve an axially chiral and rigid perylene bisimide (PBI) dye by attaching the chirality-inducing 2,2'-biphenoxy moiety at one side of the bay area and the rigidity-inducing di--butylsilanediol bridge on the other side. This yielded a new bay-functionalized PBI derivative carrying the combination of a highly rigid and, simultaneously, an axially chiral perylene core.

View Article and Find Full Text PDF

This study aimed to develop ultrasonically-assisted, alcohol-free, and noncorrosive aqueous zein/turmeric essential oil (TEO)-loaded nanoemulsions (NEs) to stimulate pullulan/carboxymethyl chitosan (P/CMCS)-based edible films for mango fruit preservation. The influence of innovative sonicated zein/TEO-based NEs (ZTNEs) as nanofillers on the physico-mechanical characteristics of the resulting P/CMCS edible films was investigated. A stable and well-dispersed ZTNE was achieved using 20 % zein with 10 min of ultrasound treatment, leading to a reduced droplet size (194.

View Article and Find Full Text PDF

The improper handling and uncontrolled discharge of toxic organic dyes result in significant adverse effects on both human health and the environment. This study investigates the fabrication of SnO₂, yttrium and cobalt dual-doped SnO₂ (YCSn), chitosan-capped SnO₂ (CS*Sn), and chitosan-capped yttrium and cobalt dual-doped SnO₂ (CS*YCSn) nanoparticles using a one-step coprecipitation method for the photocatalytic degradation of methylene blue (MB) under visible light irradiation. Characterization techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM), and ultraviolet-visible (UV-Vis) spectrophotometry confirm the successful synthesis of biodegradable CS*YCSn nanoparticles.

View Article and Find Full Text PDF

Enhancing colonic health with encapsulated grape seed anthocyanins: Oral capsule for Colon-targeted delivery.

Food Chem

December 2024

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China. Electronic address:

Grape seed anthocyanins (GSA) offer health benefits and protect against diseases, including colitis. Its unpleasant smell and instability prevent widespread application. Antisolvent pretreatment GSA was encapsulated in chitosan-phytic acid 3D gel network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!