Differences in gene expression underlie central questions in plant biology extending from gene function to evolutionary mechanisms and quantitative traits. However, resolving expression of closely related genes (e.g. alleles and gene family members) is challenging on a genome-wide scale due to extensive sequence similarity and frequently incomplete genome sequence data. We present a new expression-profiling strategy that utilizes long-read, high-throughput sequencing to capture the information-rich 3'-untranslated region (UTR) of messenger RNAs (mRNAs). Resulting sequences resolve gene-specific transcripts independent of a sequenced genome. Analysis of approximately 229,000 3'-anchored sequences from maize (Zea mays) ovaries identified 14,822 unique transcripts represented by at least two sequence reads. Total RNA from ovaries of drought-stressed wild-type and viviparous-1 mutant plants was used to construct a multiplex cDNA library. Each sample was labeled by incorporating one of 16 unique three-base key codes into the 3'-cDNA fragments, and combined samples were sequenced using a GS 20 454 instrument. Transcript abundance was quantified by frequency of sequences identifying each unique mRNA. At least 202 unique transcripts showed highly significant differences in abundance between wild-type and mutant samples. For a subset of mRNAs, quantitative differences were validated by real-time reverse transcription-polymerase chain reaction. The 3'-UTR profile resolved 12 unique cellulose synthase (CesA) transcripts in maize ovaries and identified previously uncharacterized members of a histone H1 gene family. In addition, this method resolved nearly identical paralogs, as illustrated by two auxin-repressed, dormancy-associated (Arda) transcripts, which showed reciprocal mRNA abundance in wild-type and mutant samples. Our results demonstrate the potential of 3'-UTR profiling for resolving gene- and allele-specific transcripts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2230554 | PMC |
http://dx.doi.org/10.1104/pp.107.108597 | DOI Listing |
Cell Biol Toxicol
January 2025
Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
Alzheimer's disease (AD), the most prevalent form of dementia in the elderly, involves critical changes such as reduced aerobic glycolysis in astrocytes and increased neuronal apoptosis, both of which are significant in the disease's pathology. In our study, astrocytes treated with amyloid β1-42 (Aβ) to simulate AD conditions exhibited upregulated expressions of small ubiquitin-like modifier (SUMO)-specific protease 1 (SENP1) and Pumilio RNA Binding Family Member 2 (PUM2), alongside decreased levels of Nuclear factor erythroid 2-related factor 2 (NRF2). SENP1 is notably the most upregulated SUMOylation enzyme in Aβ-exposed astrocytes.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
Department of Dermatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan 250011, China. Electronic address:
The pathogenesis of psoriasis involves hyperproliferation of epidermal keratinocytes and abnormal interactions between activated keratinocytes and infiltrating immune cells. Emerging evidence has shown that keratinocytes play essential roles in both the initiation and maintenance of psoriasis, suggesting that exposing keratinocytes to agents with antiproliferative and anti-inflammatory effects may be effective for psoriasis treatment. Guggulsterone (GS), a plant sterol derived from the gum resin of Commiphora wightii, possesses a variety of pharmacological activities.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
Department of General Surgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China; Department of General Surgery, Jiangnan University Medical Center, Wuxi, China. Electronic address:
Colorectal cancer (CRC) is a malignancy with high global incidence and mortality rates, posing a serious threat to human health. Despite favorable outcomes following early detection and surgical intervention, the asymptomatic nature of CRC often results in delayed diagnoses, limiting surgical treatment options. Furthermore, effective therapeutic drugs for CRC remain lacking in clinical practice, highlighting an urgent need to identify novel therapeutic targets.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Key Laboratory of Medical Molecular Virology (Ministry of Education / National Health Commission / Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200033, China.
Sialic acids derived from colonic mucin glycans are crucial nutrients for enteric bacterial pathogens like . The uptake and utilization of sialic acid in depend on coordinated regulons, each activated by specific metabolites at the transcriptional level. However, the mechanisms enabling crosstalk among these regulatory circuits to synchronize gene expression remain poorly understood.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Université Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000, Besançon, France. Electronic address:
Nonsense-Mediated mRNA Decay (NMD) is a key control mechanism of RNA quality widely described to target mRNA harbouring Premature Termination Codon (PTC). However, recent studies suggested the existence of non-canonical pathways which remain unresolved. One of these alternative pathways suggested that specific mRNA could be targeted through their 3' UTR (Untranslated Region), which contain various elements involved in mRNA stability regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!