The autotrophic two-species biofilm from the packed bed reactor of a life-support system, containing Nitrosomonas europaea ATCC 19718 and Nitrobacter winogradskyi ATCC 25391, was analysed after 4.8 years of continuous operation performing complete nitrification. Real-time quantitative polymerase chain reaction (Q-PCR) was used to quantify N. europaea and N. winogradskyi along the vertical axis of the reactor, revealing a spatial segregation of N. europaea and N. winogradskyi. The main parameters influencing the spatial segregation of both nitrifiers along the bed were assessed through a multi-species one-dimensional biofilm model generated with AQUASIM software. The factor that contributed the most to this distribution profile was a small deviation from the flow pattern of a perfectly mixed tank towards plug-flow. The results indicate that the model can estimate the impact of specific biofilm parameters and predict the nitrification efficiency and population dynamics of a multispecies biofilm.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2007.10.025DOI Listing

Publication Analysis

Top Keywords

nitrosomonas europaea
8
nitrobacter winogradskyi
8
europaea winogradskyi
8
spatial segregation
8
biofilm
5
distribution nitrosomonas
4
europaea
4
europaea nitrobacter
4
winogradskyi
4
winogradskyi autotrophic
4

Similar Publications

A low-cost and renewable magnetite-pine bark (MPB) sorbent was evaluated in continuous-flow systems for the removal of various pharmaceuticals from municipal wastewater effluent following membrane bioreactor (MBR) treatment. A 33-day small-scale column test (bed volume: 791 cm) was conducted using duplicate columns of biochar (BC, Novocarbo) and activated carbon (AC, ColorSorb) as reference for two columns of BC and MPB in order to compare the efficiency of AC and MPB. After the small-scale column test, the pharmaceutical concentrations were generally below the detection limit.

View Article and Find Full Text PDF

Biological nitrification inhibition (BNI) refers to the plant-mediated process in which nitrification is inhibited through rhizospheric release of diverse metabolites. While it has been assumed that interactive effects of these metabolites shape rhizosphere processes, including BNI, there is scant evidence supporting this claim. Hence, it was a primary objective to assess the interactive effects of selected metabolites, including caffeic acid (CA), vanillic acid (VA), vanillin (VAN), syringic acid (SA), and phenylalanine (PHE), applied as single and combined compounds, against pure cultures of various ammonia-oxidising bacteria (AOB, Nitrosomonas europaea, Nitrosospira multiformis, Nitrosospira tenuis, Nitrosospira briensis) and archaea (AOA, Nitrososphaera viennensis), as well as soil nitrification.

View Article and Find Full Text PDF

Growth of soil ammonia-oxidizing archaea on air-exposed solid surface.

ISME Commun

January 2024

Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea.

Soil microorganisms often thrive as microcolonies or biofilms within pores of soil aggregates exposed to the soil atmosphere. However, previous studies on the physiology of soil ammonia-oxidizing microorganisms (AOMs), which play a critical role in the nitrogen cycle, were primarily conducted using freely suspended AOM cells (planktonic cells) in liquid media. In this study, we examined the growth of two representative soil ammonia-oxidizing archaea (AOA), EN76 and "" MY2, and a soil ammonia-oxidizing bacterium, ATCC 19718 on polycarbonate membrane filters floated on liquid media to observe their adaptation to air-exposed solid surfaces.

View Article and Find Full Text PDF

The reaction kinetics of lithotrophic ammonia-oxidizing bacteria (AOB) are strongly dependent on dissolved oxygen (DO) as their metabolism is an aerobic process. In this study, we estimate the kinetic parameters, including the oxygen affinity constant (Km[O2]) and the maximum oxygen consumption rate (Vmax[O2]), of different AOB species, by fitting the data to the Michaelis-Menten equation using nonlinear regression analysis. An example for three different species of Nitrosomonas bacteria (N.

View Article and Find Full Text PDF

Successful operation of nitrifying granules at low pH in a continuous-flow reactor: Nitrification performance, granule stability, and microbial community.

J Environ Manage

August 2024

School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China. Electronic address:

Acidic nitrification, as a novel process for treating wastewater without sufficient alkalinity, has received increasing attention over the years. In this study, a continuous-flow reactor with aerobic granular sludge was successful operated at low pH (<6.5) performing high-rate acidic nitrification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!