Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Understanding the biology of C. elegans relies on identification and analysis of essential genes, genes required for growth to a fertile adult. Approaches for identifying essential genes include several types of classical forward genetic screens, genome-wide RNA interference screens and systematic targeted gene knockout. Based on most estimates made from screening results thus far, from 15-30% of C. elegans genes appear to be essential. Genetic redundancy masks some essential functions and pleiotropy of many essential genes poses a challenge for a full understanding of their functions. Temperature sensitive mutations are valuable tools for studies of essential genes, but our ability to analyze essential genes would benefit from development of new tools for conditional inactivation or activation of specific genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4781014 | PMC |
http://dx.doi.org/10.1895/wormbook.1.57.1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!