Thixotropic twin-dendritic organogelators.

Chemistry

Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA.

Published: April 2008

AI Article Synopsis

Article Abstract

Twin-dendritic organogelators have been prepared through selective functionalization of N-(3-aminopropyl)-1,3-propanediamine (APPDA) with self-assembling dendrons by using 1,1'-carbonyldiimidazole (CDI). Subsequent modification of the APPDA linker provided an additional degree of structural diversity by which to tailor the gelator self-assembly in bulk or in the gel state. These compounds are able to gel cyclohexane, toluene, n-butyl acetate, ethyl acetate, dichloromethane, and tetrahydrofuran. 3,4-Disubstituted apical branching units provided the most efficient organogelators and show a propensity to form thixotropic gels, wherein the gel recovers its elasticity after being subjected to shear. Structural and retrostructural analysis of the twin-dendritic organogelators reveals the bulk structural characteristics to be indicative of the subsequent gel properties. Diverse self-organized arrays were identified in bulk and all are able to form gels, thus indicating the role of quasiequivalence in mediating self-assembly in the gel state. Furthermore, we have found that porous columnar mesophases provide a strategy by which to prepare thixotropic gels. We demonstrate the importance of weak lateral hydrogen bonding within a column stratum versus hydrogen bonding along the length of the column for forming porous columnar mesophases and, by extension, thixotropic gels.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200701273DOI Listing

Publication Analysis

Top Keywords

twin-dendritic organogelators
12
thixotropic gels
12
gel state
8
porous columnar
8
columnar mesophases
8
hydrogen bonding
8
gel
5
thixotropic
4
thixotropic twin-dendritic
4
organogelators
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!