Fast mass transport through carbon nanotube membranes.

Small

Department of Materials Science & Engineering, Ohio State University, 2041 N College Road, Columbus, OH 43210-1178, USA.

Published: December 2007

The May 19, 2006 issue of Science included a paper by Holt et al. on "Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes". The paper was also featured on the cover, showing methane molecules translating inside a carbon nanotube (CNT). The authors explained how they prepared 2-6-mum thin membranes consisting of double-walled carbon nanotubes (DWNTs) all aligned perpendicular to the apparent membrane surface. These tubes are open at both ends and the space between the tubes is filled with dense Si(3)N(4). Pure gas and water fluxes were measured at room temperature with the application of a small pressure difference. Interpretation of the results led to the conclusion that the membranes showed much higher fluxes than what was estimated from Knudsen gas diffusion and Poiseuille viscous flow models. The membranes have a straight-channel morphology with a narrow pore-size distribution and exceptionally smooth pore walls. The unusual geometry and surface properties make it difficult to compare the membrane's properties with common membranes but there is no question that the mass transport in the aligned DWNTs is fast indeed. To appreciate how fast, we will consider their transport properties starting from the perspective of "conventional" porous membrane technology. Recent molecular dynamics simulations suggest that none of the classic models for gas (Knudsen) and water (Poiseuille) permeation work in a meaningful way for these nanotube membranes, and new models are needed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.200700368DOI Listing

Publication Analysis

Top Keywords

mass transport
12
carbon nanotube
8
nanotube membranes
8
membranes
6
fast mass
4
transport
4
carbon
4
transport carbon
4
membranes 2006
4
2006 issue
4

Similar Publications

Objective: To elucidate the mechanism of Banxia Houpo Decoction (BHD) in treating gastroesophageal reflux disease (GERD) by integrating and utilizing the compound analysis, network pharmacology, and empirical verification.

Methods: Ultra-high performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS) was utilized to identify the primary compounds in BHD. Network pharmacology was employed to retrieve target genes.

View Article and Find Full Text PDF

Polyelectrolyte multilayer (PEM) membranes, with advantageous features of versatile chemistry and structures, are driving the development of advanced nanofiltration (NF) membranes with exceptional performance. While developing a printing method holds great promise for the eventual mass production of these membranes, reports on the printing method and the underlying mechanisms of membrane formation are currently scarce. Herein, we develop an aerosol-assisted printing (AAP) system for fabricating PEM NF membranes with highly tunable separation characteristics.

View Article and Find Full Text PDF

The aerial epidermis is a major site of quinolizidine alkaloid biosynthesis in narrow-leafed lupin.

New Phytol

January 2025

Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark.

Lupins are promising protein crops that accumulate toxic quinolizidine alkaloids (QAs) in the seeds, complicating their end-use. QAs are synthesized in green organs (leaves, stems, and pods) and a subset of them is transported to the seeds during fruit development. The exact sites of biosynthesis and accumulation remain unknown; however, mesophyll cells have been proposed as sources, and epidermal cells as sinks.

View Article and Find Full Text PDF

Rationale: The complexation with dissolved organic matter (DOM) is a pivotal factor influencing transformations, transport, and bioavailability of mercury (Hg) in aquatic environments. However, identifying these complexes poses a significant challenge because of their low concentrations and the presence of coexisting ions.

Methods: In this study, mercury-dissolved organic matter (Hg-DOM) complexes were isolated through solid-phase extraction (SPE) from Hg-humic acid suspensions, and complexes were putatively identified using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS).

View Article and Find Full Text PDF

Aims: To compare the effects of ipragliflozin, a sodium-dependent glucose transporter-2 inhibitor, and those of metformin on the visceral fat area (VFA), a prospective, multi-centre, open-label, blinded-endpoint, randomized, controlled study was undertaken. The generated data were used to examine the effects of ipragliflozin and metformin on indices of hepatic steatosis and liver fibrosis.

Materials And Methods: In total, 103 Japanese patients with type-2 diabetes (T2D), body mass index (BMI) of ≥22 kg/m and glycated haemoglobin level of 7%-10% were randomly administered ipragliflozin 50 mg or metformin 1000 mg for 24 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!