DNA with a 5'-adenylpyrophosphoryl cap (5'-adenylated DNA; AppDNA) is an activated form of DNA that is the biochemical intermediate of the reactions catalyzed by DNA ligase, RNA ligase, polynucleotide kinase, and other nucleic acid modifying enzymes. 5'-Adenylated DNA is also useful for in vitro selection experiments. Efficient preparation of 5'-adenylated DNA is therefore desirable for several biochemical applications. Here we have developed a DNA adenylation procedure that uses T4 DNA ligase and is more reliable than a previously reported approach that used the 5'-phosphorylated donor DNA substrate to be adenylated, a DNA template, and ATP but no acceptor strand. Our improved DNA adenylation procedure uses the above components as well as an acceptor strand that has a strategically chosen C-T acceptor-template mismatch directly adjacent to the adenylation site. This mismatch permits adenylation of the donor DNA substrate but largely suppresses subsequent ligation of the donor with the acceptor, as assayed on nine different DNA substrates that collectively have all four DNA nucleotides represented at each of the first two positions. The new DNA adenylation procedure is successful using either laboratory-prepared or commercial T4 DNA ligase and works well on the preparative (2 nmol) scale for all nine of the test DNA substrates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2275898PMC
http://dx.doi.org/10.1016/j.bioorg.2007.10.001DOI Listing

Publication Analysis

Top Keywords

dna
18
dna adenylation
16
dna ligase
16
acceptor strand
12
5'-adenylated dna
12
adenylation procedure
12
strand strategically
8
donor dna
8
dna substrate
8
dna substrates
8

Similar Publications

Protocol for detecting eDNA in ecological rare fish using RPA-CRISPR-Cas12a technology.

STAR Protoc

January 2025

School of Public Health, Chongqing Medical University, Chongqing 400016, China; Chongqing Miankai Biotechnology Research Institute Co., Ltd., Chongqing 400025, China. Electronic address:

The recombinase polymerase amplification (RPA)-CRISPR-Cas12a-FQ system enables sensitive detection of environmental DNA (eDNA) in rare fish species. Here, we present a protocol for eDNA amplification and Cas12a for target recognition using RPA. We describe steps for identifying a target site, synthesis and purification of CRISPR RNA (crRNA), and RPA isothermal amplification.

View Article and Find Full Text PDF

Early cancer detection substantially improves the rate of patient survival; however, conventional screening methods are directed at single anatomical sites and focus primarily on a limited number of cancers, such as gastric, colorectal, lung, breast, and cervical cancer. Additionally, several cancers are inadequately screened, hindering early detection of 45.5% cases.

View Article and Find Full Text PDF
Article Synopsis
  • Hepatitis B virus (HBV) is a major global health concern linked to liver disease and cancer, with research focusing on genetic factors that affect its evolution.
  • Recent studies highlighted the ECM1 gene, specifically two polymorphisms (rs3834087 and rs3754217), which may influence HBV pathogenesis, particularly in an African cohort analyzed in this research.
  • The study found that the heterozygous genotype of rs3754217 appears to protect against chronic hepatitis, suggesting that certain genetic variations may impact the severity of the disease in infected individuals.
View Article and Find Full Text PDF

Seroprevalence of specific antibodies to Treponema pallidum in blood donors with DNA confirmation of seropositivity.

Cell Mol Biol (Noisy-le-grand)

January 2025

Swedish Board Member of General Surgery, Kurdistan Higher Council of Medical Specialties, Erbil, Iraq.

The rising global incidence of syphilis underscores the risk of transmission through blood transfusions. Treponema pallidum, the pathogen responsible for syphilis, represents a major public health challenge. Accurate detection is essential for controlling the disease, particularly in asymptomatic blood donors.

View Article and Find Full Text PDF

ABCG2 transporter protein is one of several markers of prostate cancer stem cells (PCSCs). Gene variants of ABCG2 could affect protein expression, function, or both. The aim of this study was to identify the genetic variability of the ABCG2 gene in Mexican patients with prostate cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!