Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The coupled oxygen transport in the avascular wall of a coronary artery stenosis is studied numerically by solving the convection-diffusion equations. Two geometries replicating stenosis before and after percutaneous transluminal coronary angioplasty (PTCA) are used for the analysis. The results are compared to evaluate the effect of the degree of stenosis on oxygen transport. Important physiological aspects, such as oxygen consumption in the wall, oxygen carried by the hemoglobin, non-Newtonian viscosity of the blood, and supply of oxygen from the vasa vasorum are included. The results show that the PO2 in the medial region of the arterial wall is approximately 10mmHg. The oxygen flux to the wall increases in the flow acceleration region, whereas it decreases at the flow reattachment zone. Near the location of flow separation, there is a small rise followed by a sharp fall in the oxygen flux. The drop in the oxygen flux to the wall at the point of flow reattachment for pre-PTCA stenosis is four times that for post-PTCA stenosis. The minimum PO2 in the avascular wall, PO2,min, at this location decreases to approximately 6.0 and 4.2mmHg for post- and pre-PTCA stenosis, respectively. The drop in PO2,w and PO2,min at the point of flow reattachment for pre-PTCA is approximately 2 times that for post-PTCA stenosis. Thus, the present study quantifies the oxygen transport to the arterial wall before and after cardiovascular intervention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiomech.2007.09.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!