Objectives: Trabectedin (ET-743, Yondelis) is a natural marine product, with antitumour activity, currently in phase II/III clinical trials. Previous studies have shown that cells hypersensitive to ultraviolet (UV)-rays because of nucleotide excision repair (NER) deficiency, were resistant to trabectedin. The purpose of this study was to investigate whether this resistance was associated with different drug-induced cell cycle perturbations.

Materials And Methods: An isogenic NER-proficient cellular system (CHO-AA8) and a NER-deficient one (CHO-UV-96), lacking functional ERCC-1, were studied. Flow cytometric assays showed progressive accumulation of cells in G2 + M phase in NER-proficient but not in NER-deficient cells. Applying a computer simulation method, we realized that the dynamics of the cell cycle perturbations in all phases were complex.

Results: Cells exposed to trabectedin during G1 and G2 + M first experienced a G1 block, while those exposed in S phase were delayed in S and G2 + M phases but eventually divided. In the presence of functional NER, exit from the G1 block was faster; then, cells progressed slowly through S phase and were subsequently blocked in G2 + M phase. This G2 + M processing of trabectedin-induced damage in NER-proficient cells was unable to restore cell cycling, suggesting a difficulty in repairing the damage.

Conclusions: This might be due either to important damage left unrepaired by previous G1 repair, or that NER activity itself caused DNA damage, or both. We speculate that in UV-96 cells repair mechanisms other than NER are activated both in G1 and G2 + M phases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6760722PMC
http://dx.doi.org/10.1111/j.1365-2184.2007.00469.xDOI Listing

Publication Analysis

Top Keywords

cell cycle
12
dynamics cell
8
trabectedin et-743
8
nucleotide excision
8
excision repair
8
cells
8
ner-proficient cells
8
repair ner
8
phase
6
cycle phase
4

Similar Publications

Proliferating animal cells maintain a stable size distribution over generations despite fluctuations in cell growth and division size. Previously, we showed that cell size control involves both cell size checkpoints, which delay cell cycle progression in small cells, and size-dependent regulation of mass accumulation rates (Ginzberg et al., 2018).

View Article and Find Full Text PDF

PO Tetrahedron Assisted Chelate Engineering for 10.67%-Efficient Antimony Selenosulfide Solar Cells.

Adv Mater

January 2025

Institute of Thin Film Physics and Applications, Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.

Anisotropic carrier transport and deep-level defect of antimony selenosulfide (Sb(S,Se)) absorber are two vital auses restraining the photovoltaic performance of this emerging thin-film solar cell. Herein, chelate engineering is proposed to prepare high-quality Sb(S,Se) film based on hydrothermal deposition approach, which realizes desirable carrier transport and passivated defects by using tetrahedral PO ion in dibasic sodium phosphate (NaHPO, DSP). The PO Lewis structure, on one hand in the form of [(SbO)(PO)] chelate, can adsorb on the polar planes of cadmium sulfide (CdS) layer, promoting the heterogeneous nucleation, and on the other hand, the tetrahedral PO inhibits horizontal growth of (SbS(e)) ribbons due to size effects, thus achieving desirable [hk1] orientation.

View Article and Find Full Text PDF

Oral squamous cell carcinoma (OSCC) is a type of head and neck cancer (HNC) with a high recurrence rate, which has been reported to be associated with the presence of cancer stem cells (CSCs). Tribbles pseudokinase 3 (TRIB3) is involved in intracellular signaling and the aim of the present study was to investigate the role of TRIB3 in the maintenance of CSCs. Analysis of The Cancer Genome Atlas database samples demonstrated a positive correlation between TRIB3 expression levels and shorter overall survival rates in patients with HNC.

View Article and Find Full Text PDF

Human papillomavirus (HPV)‑positive and -negative head and neck squamous cell carcinoma (HNSCC) are often associated with activation of the phosphatidylinositol 3‑kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway due to mutations or amplifications in , loss of or activation of receptor tyrosine kinases. In HPV‑negative tumors, (encoding p16 protein) inactivation or (encoding Cyclin D1 protein) amplification frequently results in sustained cyclin‑dependent kinase (CDK) 4/6 activation. The present study aimed to investigate the efficacy of the CDK4/6 inhibitors (CDKi) palbociclib and ribociclib, and the PI3K/Akt/mTOR pathway inhibitors (PI3Ki) gedatolisib, buparlisib and alpelisib, in suppressing cell viability of HPV‑positive and ‑negative HNSCC cell lines.

View Article and Find Full Text PDF

Electrochemistry-enabled Ir-catalyzed C-H/N-N bond activation facilitates [3+2] annulation of phenidones with propiolates.

Chem Commun (Camb)

January 2025

Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.

A mild and efficient [3+2] annulation of phenidones with propiolates has been developed to access -substituted indole alkylamides, enabled by merging electrochemistry with iridium catalysis using an undivided cell at room temperature. The mechanistic studies have confirmed that the electrochemically mediated catalytic cycle of Ir-Ir-Ir exhibits enhanced efficiency, mild reaction conditions, and unconventional selectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!