This review concerns copper-containing oxidases--laccases. Principal biochemical and electrochemical properties of laccases isolated from different sources are described, as well as their structure and mechanism of catalysis. Possible applications of laccases in different fields of biotechnology are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1134/s0006297907100112 | DOI Listing |
Chembiochem
January 2025
Vilnius University: Vilniaus Universitetas, Life Sciences Center Institute of Biotechnology, Vilnius, LITHUANIA.
Enzyme functional analysis is a multifaceted process that can be used for various purposes, such as screening for specific activities, as well as developing, optimising, and validating processes or final products. Functional analysis methods are crucial for assessing enzyme performance and catalytic properties. Laccase, a well-known blue multi-copper oxidase, holds immense potential in diverse industries such as pharmaceuticals, paper and pulp, food and beverages, textiles, and biorefineries due to its clean oxidation process and versatility in handling a wide range of substrates.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea; Genome-based Bio-IT Convergence Institute, Asan, 31460, Republic of Korea; Bio Big Data-based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, 31460, Republic of Korea; Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, 31460, Republic of Korea. Electronic address:
Laccases are of particular interest in addressing environmental challenges, such as the degradation of triphenylmethane (TPM) dyes, including crystal violet (CV) and Coomassie Brilliant Blue (CBB), which are commonly used in SDS-PAGE for protein visualization. However, these dyes present significant environmental concerns due to their resistance to degradation, which makes their removal from industrial wastewater a major challenge. To address this, the current study investigates the potential of a novel CotA laccase derived from Bacillus sp.
View Article and Find Full Text PDFFood Chem
January 2025
Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China. Electronic address:
Identifying antioxidant phenolic compounds (APs) in food plays a crucial role in understanding their biological functions and associated health benefits. Here, a bifunctional Cu-1,3,5-benzenetricarboxylic acid (Cu-BTC) nanozyme was successfully prepared. Due to the excellent laccase-like behavior of Cu-BTC, it can catalyze the oxidation of various APs to produce colored quinone imines.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun, 130117, China.
Background: Adrenaline and glucose are essential biomarkers in human body for maintaining metabolic balance. Abnormal levels of adrenaline and glucose are associated with various diseases. Therefore, it is important to design portable, on-site devices for rapid adrenaline and glucose analysis to safeguard health.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
The worldwide textile industry extensively uses azo dyes, which pose serious health and environmental risks. Effective cleanup is necessary but challenging. Developing bioremediation methods for textile effluents will improve color removal efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!