Context: Amiodarone, a potent antiarrhythmic, iodine-containing agent, is a highly active oxidant exerting cytotoxic effects on thyrocytes at pharmacological concentrations. Patients receiving amiodarone usually remain euthyroid, but occasionally develop thyroid dysfunction. Although there is a general consensus that amiodarone-associated hypothyroidism is iodine induced, the destructive mechanism of thyroid follicles in amiodarone-induced thyrotoxicosis remains unknown.

Objective: To elucidate the mechanism by which amiodarone elicits thyroid dysfunction.

Design: Human thyroid follicles were cultured with thyroid-stimulating hormone (TSH) and amiodarone at therapeutic (1-2 microM) and pharmacological (10-20 microM) concentrations, and the drug-induced effect on whole human gene expression was analyzed by cDNA microarray. Microarray data were confirmed by real-time PCR and Western blot.

Main Outcomes: Amiodarone at 1-2 muM decreased the expression level of the sodium-iodide symporter (NIS) to nearly half, but did not affect genes participating in thyroid hormonogenesis (thyroid peroxidase, thyroglobulin, pendrin, and NADPH oxidase). Higher concentrations (10-20 microM) decreased the expression of all these genes, accompanied by increased expression of antioxidant proteins such as heme oxygenase 1 and ferritin. When thyroid follicles obtained from a patient with Graves' disease who had been treated with amiodarone were cultured in amiodarone-free medium, TSH-induced thyroid function was intact, suggesting that amiodarone at a maintenance dose did not elicit any cytotoxic effect on thyrocytes. The ultrastructural features of cultured thyroid follicles were compatible with these in vitro findings.

Conclusion: These in vitro and ex vivo findings suggest that patients taking maintenance doses of amiodarone usually remain euthyroid, probably due to escape from the Wolff-Chaikoff effect mediated by decreased expression of NIS mRNA. Further, amiodarone is not cytotoxic for thyrocytes at therapeutic concentrations but elicits cytotoxicity through oxidant activity at supraphysiological concentrations. We speculate that when amiodarone-induced prooxidant activity somehow exceeds the endogenous antioxidant capacity, the thyroid follicles will be destroyed and amiodarone-induced destructive thyrotoxicosis may develop.

Download full-text PDF

Source
http://dx.doi.org/10.1089/thy.2007.0215DOI Listing

Publication Analysis

Top Keywords

thyroid follicles
24
decreased expression
12
thyroid
11
amiodarone
10
sodium-iodide symporter
8
therapeutic concentrations
8
supraphysiological concentrations
8
human thyroid
8
amiodarone remain
8
remain euthyroid
8

Similar Publications

Radiotherapy-induced Hypothalamic-Pituitary axis dysfunction in adult Brain, head and neck and skull base tumor patients - A systematic review and Meta-Analysis.

Clin Transl Radiat Oncol

March 2025

Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands.

Background And Purpose: Radiotherapy for brain, head & neck (HN), and skull base (SB) tumors may deliver significant radiation dose to the hypothalamic-pituitary axis (HPA), leading to impaired functioning of this region and hence, to endocrine disorders. The purpose of this systematic review and -analysis is to investigate literature on HP dysfunction after radiation for non-pituitary brain, HN, or SB tumors at adult age, aiming to give insight in the prevalence of HP dysfunction related to radiation dose.

Materials And Methods: Literature search of the PubMed database was performed for HP dysfunction after radiotherapy in adult patients.

View Article and Find Full Text PDF

Endocrine Hormones and Their Impact on Pubertal Gynecomastia.

J Clin Med

December 2024

Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100144, China.

Pubertal gynecomastia (PG) is a common condition characterized by the abnormal development and hyperplasia of unilateral or bilateral breast tissue in adolescent males, affecting up to 50% of appropriately aged adolescents and exhibiting rising prevalence over recent years. The etiology of PG is multifaceted, encompassing physiological, pharmacological, and pathological factors. This narrative review synthesizes evidence from a comprehensive selection of peer-reviewed literature, including observational studies, clinical trials, systematic reviews, and case reports, to explore the pivotal role of endocrine hormones in the pathogenesis of PG.

View Article and Find Full Text PDF

Background: Maternal hypertensive disorders of pregnancy (HDP) was associated with increased risk of congenital hypothyroidism in preterm infants, but its underlying mechanisms remain unclear.

Objective: To investigate the possible mechanisms by which intrauterine exposure to HDP affects thyroid hormone synthesis in preterm infant rats.

Methods: preterm infant rats were obtained by Caesarean section delivery from the L-NAME group and Control groups which was induced by L-NAME and saline, respectively.

View Article and Find Full Text PDF

Characterizing thyroid follicles histogenesis in the human fetuses: A morphological approach.

Tissue Cell

December 2024

Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India. Electronic address:

Thyroid gland which is responsible for the maintenance of metabolism and growth is derived from thyroglossal duct, an outpocketing of foregut. The microscopic study of thyroid gland during development in first, second and third trimesters has utmost significance to understand the several developmental thyroid disorders metabolically and structurally. This study is descriptive observational study carried in tissue sections taken from thyroid gland of still birth and spontaneously aborted human fetuses of first, second and third trimester.

View Article and Find Full Text PDF

This study describes the congenital goiter in an alpaca (Vicugna pacos) fetus aborted in November 2021 with the clinical and pathological findings in the dam that was found dead on the farm three weeks after a miscarriage. The dam was a black coat alpaca bred in the Netherlands, imported in Italy in January 2021, and housed in a farm of central Italy for breeding purposes. Signalment and clinical data on dam and fetus were collected from the farmer and referring veterinarian.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!