A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microwave spectra and ab initio studies of Ar-propane and Ne-propane complexes: structure and dynamics. | LitMetric

Microwave spectra in the 7-26 MHz region have been measured for the van der Waals complexes, Ar-CH3CH2CH3, Ar-(13)CH3CH2CH3, 20Ne-CH3CH2CH3, and 22Ne-CH3CH2CH3. Both a- and c-type transitions are observed for the Ar-propane complex. The c-type transitions are much stronger indicating that the small dipole moment of the propane (0.0848 D) is aligned perpendicular to the van der Waals bond axis. While the 42 transition lines observed for the primary argon complex are well fitted to a semirigid rotor Hamiltonian, the neon complexes exhibit splittings in the rotational transitions which we attribute to an internal rotation of the propane around its a inertial axis. Only c-type transitions are observed for both neon complexes, and these are found to occur between the tunneling states, indicating that internal motion involves an inversion of the dipole moment of the propane. The difference in energy between the two tunneling states within the ground vibrational state is 48.52 MHz for 20Ne-CH3CH2CH3 and 42.09 MHz for 22Ne-CH3CH2CH3. The Kraitchman substitution coordinates of the complexes show that the rare gas is oriented above the plane of the propane carbons, but shifted away from the methylene carbon, more so in Ne propane than in Ar propane. The distance between the rare gas atom and the center of mass of the propane, Rcm, is 3.823 A for Ar-propane and 3.696 A for Ne-propane. Ab initio calculations are done to map out segments of the intermolecular potential. The global minimum has the rare gas almost directly above the center of mass of the propane, and there are three local minima with the rare gas in the plane of the carbon atoms. Barriers between the minima are also calculated and support the experimental results which suggest that the tunneling path involves a rotation of the propane subunit. The path with the lowest effective barrier is through a C2v symmetric configuration in which the methyl groups are oriented toward the rare gas. Calculating the potential curve for this one-dimensional model and then calculating the energy levels for this potential roughly reproduces the spectral splittings in Ne-propane and explains the lack of splittings in Ar-propane.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2780775DOI Listing

Publication Analysis

Top Keywords

rare gas
20
c-type transitions
12
propane
9
microwave spectra
8
van der
8
der waals
8
transitions observed
8
dipole moment
8
moment propane
8
neon complexes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!