TiO2 and Gd3+ doped TiO2 nanoparticles were prepared by sol-gel method and the materials were characterized by XRD, TEM, SEM-EDX, BET, FT-IR, UV-Vis absorption, and Raman spectral analysis. The photocatalytic activity of nano TiO2 and Gd/TiO2 nanoparticles was evaluated using a model pollutant propoxur, a carbamate pesticide, in a batch type UV photoreactor. The results revealed higher photocatalytic activity for Gd/TiO2 nanoparticles than both TiO2 nanoparticles and commercial TiO2 (Degussa P-25). The enhanced photocatalytic activity of Gd/TiO2 relative to TiO2 is attributed to its increased band gap energy as evidenced from the blue shift to shorter wavelength observed in the UV-Vis abso4ption spectra. The recombination rate of photogenerated electron-hole pair decreased due to increase in the band gap, which enhanced the charge transfer efficiency of Gd/TiO2 nanoparticles. Gd3+ with its half filled 7 f subshell facilitated rapid electron transfer at solid-liquid interface by shallowly trapping the electrons. Among the various dopant level of gadolinium, 0.3 wt% Gd/TiO2 nanoparticles showed higher activity than others due to its higher surface area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2007.689 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!