A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparative study of the prereactive protein kinase A Michaelis complex with kemptide substrate. | LitMetric

Comparative study of the prereactive protein kinase A Michaelis complex with kemptide substrate.

J Comput Aided Mol Des

Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.

Published: February 2008

In the present work we have modeled the Michaelis complex of the cyclic-Adenosine Monophosphate Dependent (cAMD) Protein Kinase A (PKA) with Mg(2)ATP and the heptapeptide substrate Kemptide by classical molecular dynamics. The chosen synthetic substrate is relevant for its high efficiency and small size, and it has not been used in previous theoretical studies. The structural analysis of the data generated along the 6 ns simulation indicates that the modeled substrate-enzyme complex mimics the substrate binding pattern known for PKA. The values of the average prereactive distances obtained from the simulation do not exclude any of the two limiting situations proposed as mechanisms in the literature for the phosphorylation reaction (dissociative and associative) because the system oscillates between configurations compatible with each of them. Furthermore, the results obtained for the average interaction distances between active site residues concord in suggesting the plausibility of an alternative third reaction mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10822-007-9143-xDOI Listing

Publication Analysis

Top Keywords

protein kinase
8
michaelis complex
8
comparative study
4
study prereactive
4
prereactive protein
4
kinase michaelis
4
complex kemptide
4
substrate
4
kemptide substrate
4
substrate work
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!