Diffuse optical tomography is a novel imaging technique that resolves and quantifies the optical properties of objects buried in turbid media. Typically, numerical solutions of the diffusion equation are employed to construct the tomographic problem when media of complex geometries are investigated. Numerical methods offer implementation simplicity but also significant computation burden, especially when large three-dimensional reconstructions are involved. We present an alternative method of performing tomography of diffuse media of arbitrary geometries by means of an analytical approach, the Kirchhoff approximation. We show that the method is extremely efficient in computation times and consider its potential as a real-time three-dimensional imaging tool.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.27.000527 | DOI Listing |
Materials (Basel)
January 2025
Mechanical and Manufacturing Department, Mondragon University, 20500 Mondragon, Spain.
This study investigates fixed and moving mesh methodologies for modeling liquid metal-free surface deformation during the induction melting process. The numerical method employs robust coupling of magnetic fields with the hydrodynamics of the turbulent stirring of liquid metal. Free surface tracking is implemented using the fixed mesh level set (LS) and the moving mesh arbitrary Lagrangian-Eulerian (ALE) formulation.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Ulsan Ship and Ocean College, Ludong University, Yantai 264025, China.
This study introduces a novel analytical framework for investigating the vibration characteristics of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) elliptical cylindrical shells under arbitrary boundary conditions. Unlike previous studies that focused on simplified geometries or specific boundary conditions, this work combines the least-squares weighted residual method (LSWRM) with an adapted variational principle, addressing high-order vibration errors and ensuring continuity across structural segments. The material properties are modeled using an extended rule of mixtures, capturing the effects of carbon nanotube volume fractions and distribution types on structural dynamics.
View Article and Find Full Text PDFBull Math Biol
January 2025
School of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, Australia.
We propose a simple mathematical model to describe the mechanical relaxation of cells within a curved epithelial tissue layer represented by an arbitrary curve in two-dimensional space. This model generalises previous one-dimensional models of flat epithelia to investigate the influence of curvature for mechanical relaxation. We represent the mechanics of a cell body either by straight springs, or by curved springs that follow the curve's shape.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Civil and Environmental Engineering Department, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
Microelectromechanical systems (MEMSs) are attracting increasing interest from the scientific community for the large variety of possible applications and for the continuous request from the market to improve performances, while keeping small dimensions and reduced costs. To be able to simulate a priori and in real time the dynamic response of resonant devices is then crucial to guide the mechanical design and to support the MEMSs industry. In this work, we propose a simplified modeling procedure able to reproduce the nonlinear dynamics of MEMS resonant devices of arbitrary geometry.
View Article and Find Full Text PDFSci Rep
December 2024
Semiconductor Physics, Institute of Physics, Chemnitz University of Technology, 09126, Chemnitz, Germany.
Magnetic field effects (MFEs) in thermally activated delayed fluorescence (TADF) materials have been shown to influence the reverse intersystem crossing (RISC) and to impact on electroluminescence (EL) and conductivity. Here, we present a novel model combining Cole-Cole and Lorentzian functions to describe low and high magnetic field effects originating from hyperfine coupling, the Δg mechanism, and triplet processes. We applied this approach to organic light-emitting devices of third generation based on tris(4-carbazoyl-9-ylphenyl)amine (TCTA) and 2,2',2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi), exhibiting blue emission, to unravel their loss mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!