Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ray theory plays an important role in determining the propagation properties of high-frequency fields and their statistical measures in complicated random environments. According to the ray approach, the field at the observer can be synthesized from a variety of field species arriving along multiple ray trajectories resulting from refraction and scattering from boundaries and from scattering centers embedded in the random medium. For computations of the statistical measures, it is desirable therefore to possess a solution for the high-frequency field propagating along an isolated ray trajectory. For this reason, a new reference-wave method was developed to provide an analytic solution of the parabolic-wave equation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.27.000052 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!