Two mononuclear complexes, [Ni(acac)2].0.5CH3OH (1) and[Co(acac)2NO3].2H2O (2) (acac = pentane-2,4-dione), have been synthesized and characterized by single crystal X-ray analysis. Complex 1 crystallizes in the monoclinic space group P2(1)/c with a = 9.295(4), b = 11.450(5), c = 12.974(6) A, V = 1379.1(11) A(3),beta = 92.854(7), and Z = 4. Complex 2 crystallizes in the triclinic space group P(-1) with a= 8.153(9), b = 9.925(11), c = 10.355(12), V = 746.3(15) A(3), alpha = 70.530(16), beta =71.154(15), gamma = 80.698(16) and Z = 2. Complex 1 has a one-dimensional chain-like structure, which is extended by weak hydrogen contacts, while complex 2 shows a three-dimensional network structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6147331 | PMC |
http://dx.doi.org/10.3390/91100949 | DOI Listing |
Int J Mol Sci
January 2025
Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
In this study, we developed a facile one-pot synthesis of a nanocomposite consisting of silver nanoparticles (AgNPs) growing over graphene oxide (GO) nanoflakes (AgNPs@GO). The process consists of the in situ formation of AgNPs in the presence of GO nanosheets via the spontaneous decomposition of silver(I) acetylacetonate (Ag(acac)) after dissolution in water. This protocol is compared to an ex situ approach where AgNPs are added to a waterborne GO nanosheet suspension to account for any attractive interaction between preformed nanomaterials.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
Recently, the extensive use of antibiotics has unavoidably resulted in the discharge of significant quantities of these drugs into the environment, causing contamination and fostering antibiotic resistance. Among various approaches employed to tackle this problem, heterogeneous photocatalysis has emerged as a technique for antibiotic degradation. This study explores the potential of CeO as a photocatalyst for the degradation of chloramphenicol.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
Modulation of optical properties through smart protein matrices is exemplified by a few examples in nature such as rhodopsin (absorption wavelength tuning) and the green fluorescence protein (emission), but in general, the scope found in nature for the matrix-controlled photofunctions remains rather limited. In this review, we present cyclophane-based supramolecular host-guest complexes for which electronic interactions between the cyclophane host and mostly planar aromatic guest molecules can actively modulate excited-state properties in a more advanced way involving both singlet and triplet excited states. We begin by highlighting photofunctional host-guest systems for on-off fluorescence switching and chiroptical functions using bay-functionalized perylene bisimide cyclophanes.
View Article and Find Full Text PDFOrg Lett
January 2025
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
Presented herein is a nickel-catalyzed chemo- and regioselective three-component tandem carboamination and cyclization of terminal alkynes with organoboronic acids and anthranils for facile and modular access to 2,3-substituted quinolines. In this process, anthranil has dual roles: serving as an electrophilic aminating reagent and a redox buffer to suppress the generation of an off-cycle Ni(0) complex. Moreover, the anionic acetylacetonate (acac) ligand was found to be vital to ensure a productive Ni(I)-Ni(III)-Ni(I) catalytic cycle.
View Article and Find Full Text PDFACS Sens
January 2025
School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
Alzheimer's disease (AD) is characterized by progressive memory loss and cognitive decline, significantly impairing the daily life of elderly individuals. The low abundance of blood-based biomarkers in AD necessitates higher analytical technique requirements. Herein, one novel iridium-based ECL self-enhanced nanoemitter (TPrA@Ir-SiO) was unprecedentedly reported, and it was further used to construct an ultrasensitive ECL magnetic immunosensor by a multiple-signal amplification strategy to unequally sensitively and accurately detect the AD blood-based biomarker (P-tau181) in this work.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!