A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nitric oxide-donating aspirin derivatives suppress microsatellite instability in mismatch repair-deficient and hereditary nonpolyposis colorectal cancer cells. | LitMetric

Nitric oxide-donating nonsteroidal anti-inflammatory drugs (NO-NSAIDs) are an emergent class of pharmaceutical derivatives with promising utility as cancer chemopreventive agents. Aspirin and sulindac have been shown to be effective in selecting for cells with reduced microsatellite instability (MSI) that is inherent in mismatch repair (MMR)-deficient hereditary nonpolyposis colorectal cancer (HNPCC) cells. The effect of NO-NSAIDs on MSI in MMR-deficient HNPCC cells is unknown. Here, we have examined genetically defined MMR-deficient murine embryo fibroblasts, murine colonocytes, and isogenic human HNPCC tumor cell lines treated with acetylsalicylic acid (aspirin; ASA) and three isomeric derivatives of NO-aspirin (NO-ASA). The MSI profiles were determined and compared with the Bethesda Criteria. We found that the ASA- and NO-ASA-treated MMR-deficient cell lines displayed a dose-dependent suppression of MSI that appeared as early as 8 weeks and gradually increased to include up to 67% of the microsatellite sequences examined after 19 to 20 weeks of continuous treatment. Residual resistance to microsatellite stabilization was largely confined to mononucleotide repeat sequences. Control (MMR-proficient) cells showed no changes in microsatellite status with or without treatment. The relative dose-dependent stabilization selection was: ortho-NO-ASA approximately para-NO-ASA > meta-NO-ASA >> ASA. Moreover, the doses required for stabilization by the ortho- and para-NO-ASA were 300- to 3,000-fold lower than ASA. These results suggest that NO-ASA derivatives may be more effective at suppressing MSI in MMR-deficient cell lines than ASA and should be considered for chemopreventive trials with HNPCC carriers.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-07-2562DOI Listing

Publication Analysis

Top Keywords

cell lines
12
nitric oxide-donating
8
microsatellite instability
8
hereditary nonpolyposis
8
nonpolyposis colorectal
8
colorectal cancer
8
hnpcc cells
8
msi mmr-deficient
8
mmr-deficient cell
8
microsatellite
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!