A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

PCPH/ENTPD5 expression enhances the invasiveness of human prostate cancer cells by a protein kinase C delta-dependent mechanism. | LitMetric

PCPH/ENTPD5 expression enhances the invasiveness of human prostate cancer cells by a protein kinase C delta-dependent mechanism.

Cancer Res

Laboratory of Experimental Carcinogenesis, Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20057-1482, USA.

Published: November 2007

Previous reports showed that PCPH is mutated or deregulated in some human tumors, suggesting its participation in malignant progression. Immunohistochemical analyses showed that PCPH is not expressed in normal prostate, but its expression increases along cancer progression stages, being detectable in benign prostatic hyperplasia, highly expressed in prostatic intraepithelial neoplasia, and remaining at high levels in prostate carcinoma. Experiments designed to investigate the contribution of PCPH to the malignant phenotype of prostate cancer cells showed that PCPH overexpression in PC-3 cells, which express nearly undetectable PCPH levels, increased collagen I expression and enhanced invasiveness, whereas shRNA-mediated PCPH knockdown in LNCaP cells, which express high PCPH levels, down-regulated collagen I expression and decreased invasiveness. PCPH regulated invasiveness and collagen I expression by a mechanism involving protein kinase C delta (PKC delta): (a) PCPH knockdown in LNCaP cells decreased PKC delta levels relative to control cells; (b) PKC delta knockdown in LNCaP cells recapitulated all changes caused by PCPH knockdown; and (c) forced expression of PKC delta in cells with knocked down PCPH reverted all changes provoked by PCPH down-regulation and rescued the original phenotype of LNCaP cells. These results strongly suggested that the expression level and/or mutational status of PCPH contributes to determine the invasiveness of prostate cancer cells through a mechanism involving PKC delta. Data from immunohistochemical analyses in serial sections of normal, premalignant, and malignant prostate specimens underscored the clinical significance of our findings by showing remarkably similar patterns of expression for PCPH and PKC delta, thus strongly suggesting their likely coregulation in human tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-07-2041DOI Listing

Publication Analysis

Top Keywords

pkc delta
24
lncap cells
16
pcph
14
prostate cancer
12
cancer cells
12
collagen expression
12
pcph knockdown
12
knockdown lncap
12
cells
10
protein kinase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!