Collective behavior based on self-organization has been shown in group-living animals from insects to vertebrates. These findings have stimulated engineers to investigate approaches for the coordination of autonomous multirobot systems based on self-organization. In this experimental study, we show collective decision-making by mixed groups of cockroaches and socially integrated autonomous robots, leading to shared shelter selection. Individuals, natural or artificial, are perceived as equivalent, and the collective decision emerges from nonlinear feedbacks based on local interactions. Even when in the minority, robots can modulate the collective decision-making process and produce a global pattern not observed in their absence. These results demonstrate the possibility of using intelligent autonomous devices to study and control self-organized behavioral patterns in group-living animals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1144259 | DOI Listing |
J Insect Sci
January 2025
School of Biological Sciences, University of Aberdeen, King's College, Aberdeen, UK.
Radio frequency identification (RFID) technology and marker recognition algorithms can offer an efficient and non-intrusive means of tracking animal positions. As such, they have become important tools for invertebrate behavioral research. Both approaches require fixing a tag or marker to the study organism, and so it is useful to quantify the effects such procedures have on behavior before proceeding with further research.
View Article and Find Full Text PDFPlant Biol (Stuttg)
January 2025
Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, Japan.
While Coleoptera, Diptera, Hymenoptera, and Lepidoptera have traditionally been recognized as key pollinators, recent studies suggest that other insect groups, such as Blattodea (cockroaches), may also play a significant role. However, direct evidence of fruit set resulting from cockroach pollination remains limited, even in plants presumed to rely on this mode of pollination. This study investigated the breeding system of the non-photosynthetic plant Balanophora tobiracola on Yakushima Island, Japan, with a particular focus on the potential occurrence of agamospermy.
View Article and Find Full Text PDFMediators Inflamm
January 2025
Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.
Numerous studies have reported on the types of aeroallergen sensitization in various pediatric allergic diseases, but limited data compared the types of aeroallergen sensitization across different pediatric allergic diseases. The aim of this study is to explore the nature and significance of aeroallergen sensitization in diverse pediatric allergic conditions. A comparative analysis was carried out on aeroallergen sensitization in children suffering from allergic diseases who visited the Otolaryngology, Respiratory, and Dermatology Departments between January 2019 and December 2023.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
College of Agriculture and Biological Science, Dali University, Dali 671003, China.
Five isonitrogenous and isolipidic diets (Diet 1-Diet 5, with Diet 1 as the control) were formulated to replace 0%, 20%, 40%, 60%, and 80% of fishmeal with American cockroach residue. Juvenile (initial body weight approximately 74 g) were randomly assigned to these diets for a 10-week feeding trial. The Diet 3 group (40% replacement) showed significantly higher final body weight, weight gain rate, specific growth rate, and protein efficiency ratio compared to other groups.
View Article and Find Full Text PDFJ Insect Physiol
December 2024
Department of Entomology, VA Tech, Blacksburg, VA, 24061-0319, United States.
The role of nitrogen during insect development and reproduction is key in the success of a species, and is of primary importance in wood feeding taxa. Based on comparison of xylophagous, one-piece termites to the termite sister group, subsocial wood-feeding cockroaches in the genus Cryptocercus, it has been proposed that the evolution of termite eusociality involved a fundamental shift in nitrogen allocation strategies. Cryptocercus exhibits a nitrogen storage economy, with individuals gradually increasing in size and cuticular density over a years-long developmental period.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!