Reverse transcriptases (RTs) from avian myeloblastosis virus (AMV) and Moloney murine leukaemia virus (MMLV) have been most extensively used as a tool for conversion of RNA to DNA. In this study, we compared the thermal stabilities of AMV RT and MMLV RT by observing their irreversible thermal inactivation. The temperatures reducing initial activity by 50% in 10-min incubation, T(50), of AMV RT were 47 degrees C without the template-primer (T/P), poly(rA)-p(dT)(12-18), and 52 degrees C with the T/P (28 microM). T(50) of MMLV RT were 44 degrees C without the T/P and 47 degrees C with the T/P (28 microM). Unexpectedly, AMV RT was considerably activated when incubated with the T/P at 45 and 48 degrees C. Such activation was not observed in MMLV RT. These results suggest that AMV RT and MMLV RT are different in the following: (i) The intrinsic thermal stability of AMV RT is higher than that of MMLV RT; (ii) AMV RT is activated by thermal treatment with the T/P at 45-48 degrees C; and (iii) AMV RT is stabilized by the T/P more potently than MMLV RT. Thermodynamic analysis indicates that thermal inactivation of AMV RT and MMLV RT is due to the large entropy change of activation for thermal inactivation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jb/mvm217 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!