FXR-mediated regulation of eNOS expression in vascular endothelial cells.

Cardiovasc Res

Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 639 Salk Hall, Pittsburgh, PA 15261, USA.

Published: January 2008

Aims: The farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily that is highly expressed in liver, kidney, adrenals, and intestine. FXR was previously proposed to play an important role in the pathogenesis of cardiovascular diseases via regulating the metabolism and transport of cholesterol. We have recently shown that FXR is also expressed in rat pulmonary vascular endothelial cells (EC) and that activation of FXR leads to inhibition of endothelin-1 expression. In the present study, we examine whether activation of FXR also affects the expression of endothelial nitric oxide synthase (eNOS) in rat, bovine, and sheep vascular EC.

Methods And Results: Treatment of vascular EC with a FXR ligand resulted in upregulation of expression of eNOS mRNA and protein and an increased production of nitrite/nitrate. FXR appears to induce eNOS expression at a transcriptional level because (1) upregulation of eNOS mRNA expression was abolished by the treatment of a transcription inhibitor, actinomycin D; and (2) eNOS promoter activity was significantly increased by pharmacological or genetic activation of FXR. Functional analysis of rat eNOS promoter identified an imperfect inverted repeat DNA motif, IR2 (-628AGCTCAgtGGACCT-641), as a likely FXR-responsive element that is involved in eNOS regulation.

Conclusion: These results support the notion that vascular FXR may serve as a novel molecular target for manipulating the expression of eNOS for the treatment of vascular diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvm016DOI Listing

Publication Analysis

Top Keywords

activation fxr
12
enos
9
fxr
9
enos expression
8
vascular endothelial
8
endothelial cells
8
treatment vascular
8
vascular fxr
8
expression enos
8
enos mrna
8

Similar Publications

Ethnopharmacological Relevance: Cisplatin (CP), a widely used antineoplastic agent, is a leading cause of drug-induced liver injury (DILI) due to its hepatotoxic effects. Licorice (GC), an established remedy in traditional Chinese medicine (TCM), has shown promise in addressing liver diseases and DILI. Nonetheless, the specific active components and underlying mechanisms of GC in mitigating CP-induced liver injury remain inadequately investigated.

View Article and Find Full Text PDF

Regulation of bile acids and their receptor FXR in metabolic diseases.

Front Nutr

December 2024

Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.

High sugar, high-fat diets and unhealthy lifestyles have led to an epidemic of obesity and obesity-related metabolic diseases, seriously placing a huge burden on socio-economic development. A deeper understanding and elucidation of the specific molecular biological mechanisms underlying the onset and development of obesity has become a key to the treatment of metabolic diseases. Recent studies have shown that the changes of bile acid composition are closely linked to the development of metabolic diseases.

View Article and Find Full Text PDF

Obeticholic acid aggravates liver fibrosis by activating hepatic farnesoid X receptor-induced apoptosis in cholestatic mice.

Chem Biol Interact

December 2024

New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China. Electronic address:

Obeticholic acid (OCA) was approved for the treatment of primary biliary cholangitis (PBC) patients. However, it can cause severe drug-induced liver injury (DILI), which may put PBC patients at risk of acute-on-chronic liver failure (ACLF) and even death. Farnesoid X receptor (FXR) is considered as the target of OCA for cholestasis, but there is still a lack of research on whether hepatic and ileal FXR have different effects after OCA treatment.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease caused by insulin resistance (IR) and insufficient insulin secretion. Its characteristic pathophysiological processes involve the interaction of multiple mechanisms. In recent years, globally, the prevalence of T2DM has shown a sharp rise due to profound changes in socio-economic structure, the persistent influence of environmental factors, and the complex role of genetic background.

View Article and Find Full Text PDF

Obesity and its associated intestinal inflammatory responses represent a significant global challenge. (IF) is a dietary intervention demonstrating various health benefits, including weight loss, enhanced metabolic health, and increased longevity. However, its effect on the intestinal inflammation induced by high-fat diet (HFD) is still not fully comprehended.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!