Regulation of sarcoplasmic reticulum Ca2+ ATPase pump expression and its relevance to cardiac muscle physiology and pathology.

Cardiovasc Res

Department of Physiology and Cell Biology, College of Medicine and Public Health, The Ohio State University, 304 Hamilton Hall, 1645 Neil Ave, Columbus, OH 43210, USA.

Published: January 2008

Cardiac sarcoplasmic reticulum (SR) Ca(2+) ATPase (SERCA2a) plays a central role in myocardial contractility. SERCA2a actively transports Ca(2+) into the SR and regulates cytosolic Ca(2+) concentration, SR Ca(2+) load, and the rate of contraction and relaxation of the heart. In the heart, SERCA pump activity is regulated by two small molecular weight proteins: phospholamban (PLB) and sarcolipin (SLN). Decreases in the expression levels of SERCA2a have been observed in a variety of pathological conditions. In addition, altered expression of PLB and SLN has been reported in many cardiac diseases. Thus, SERCA2a is a major regulator of intracellular Ca(2+) homeostasis, and changes in the expression and activity of the SERCA pump contribute to the decreased SR Ca(2+) content and cardiac dysfunction during pathogenesis. In this review, we discuss the mechanisms controlling SERCA pump expression and activity both during normal physiology and under pathological states.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvm056DOI Listing

Publication Analysis

Top Keywords

serca pump
12
sarcoplasmic reticulum
8
reticulum ca2+
8
ca2+ atpase
8
pump expression
8
expression activity
8
ca2+
7
expression
5
regulation sarcoplasmic
4
pump
4

Similar Publications

The sarco(endo)plasmic reticulum Ca ATPase (SERCA) is a membrane transporter that creates and maintains intracellular Ca stores. In the heart, SERCA is regulated by an inhibitory interaction with the monomeric form of the transmembrane micropeptide phospholamban (PLB). PLB also forms avid homo-pentamers, and dynamic exchange of PLB between pentamers and SERCA is an important determinant of cardiac responsiveness to exercise.

View Article and Find Full Text PDF

Background: Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) channel. For people with CF (pwCF) affected by the most common pathogenic variant F508del, a tritherapy, named Trikafta/Kaftrio (ETI: elexacaftor (VX-445) /tezacaftor (VX-661) / ivacaftor (VX-770)) was successfully developed. However, in CF airway epithelial cells the calcium homeostasis is also disturbed; it is observed an increased calcium mobilization in CF cells compared to non-CF cells.

View Article and Find Full Text PDF

A simulation study on the role of mitochondria-sarcoplasmic reticulum Ca interaction in cardiomyocyte energetics during exercise.

J Physiol

October 2024

Department of Integrative and Systems Physiology, Faculty of Medical Sciences and Life Science Innovation Center, University of Fukui, Fukui, Japan.

Previous studies demonstrated that the mitochondrial Ca uniporter MCU and the Na-Ca exchanger NCLX exist in proximity to the sarcoplasmic reticulum (SR) ryanodine receptor RyR and the Ca pump SERCA, respectively, creating a mitochondria-SR Ca interaction. However, the physiological relevance of the mitochondria-SR Ca interaction has remained unsolved. Furthermore, although mitochondrial Ca has been proposed to be an important factor regulating mitochondrial energy metabolism, by activating NADH-producing dehydrogenases, the contribution of the Ca-dependent regulatory mechanisms to cellular functions under physiological conditions has been controversial.

View Article and Find Full Text PDF

We present the NetSci program-an open-source scientific software package designed for estimating mutual information (MI) between data sets using GPU acceleration and a k-nearest-neighbor algorithm. This approach significantly enhances calculation speed, achieving improvements of several orders of magnitude over traditional CPU-based methods, with data set size limits dictated only by available hardware. To validate NetSci, we accurately compute MI for an analytically verifiable two-dimensional Gaussian distribution and replicate the generalized correlation (GC) analysis previously conducted on the B1 domain of protein G.

View Article and Find Full Text PDF

SERCA pump as a novel therapeutic target for treating neurodegenerative disorders.

Biochem Biophys Res Commun

November 2024

Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnical University, St. Petersburg, Russia. Electronic address:

The neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) and Spinocerebellar ataxias (SCAs), present an enormous medical, social, financial and scientific problem. Despite intense research into the causes of these disorders, only marginal progress has been made in the clinic and no cures exist for any of them. Most of the scientific effort has been focused on identification of the major causes of these diseases and on developing ways to target them, such as targeting amyloid accumulation for AD or targeting expression of mutant Huntingtin for HD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!