The identification of potential sensitizing chemicals is a key step in the safety assessment process. To this end, predictive tests that require no or few animals and that are reliable, inexpensive and easy to perform are needed. The aim of this study was to evaluate the performance of murine bone marrow-derived dendritic cells (BMDCs) in an in vitro skin sensitization model. BMDCs were exposed to six well-known allergens (dinitrochlorobenzene, DNCB; dinitrofluorobenzene, DNFB; Bandrowski's base, BB; paraphenylenediamine, PPD; nickel sulfate, NiSO(4); cinnamaldehyde, Cinn). Surface expression of MHC class II, CD40, CD54, and CD86 was measured by flow cytometry after 48h exposure to these chemicals. All the allergens tested induced a significant increase in marker expression, with an augmentation in the percentage of mature cells ranging from 2.3- to 10.5-fold change over control. The level of up-regulation was dependent on the concentration and the strength of the allergens. In contrast, the irritants (sodium dodecyl sulfate, SDS and 4-aminobenzoic acid, pABA) and the negative control (zinc sulfate, ZnSO(4)) tested induced either no modification or a down-regulation of membrane marker expression. Taken together, our data suggest that murine BMDCs may represent a new and valuable in vitro model to predict the sensitizing properties of chemicals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2007.09.012DOI Listing

Publication Analysis

Top Keywords

murine bone
8
bone marrow-derived
8
marrow-derived dendritic
8
dendritic cells
8
vitro model
8
tested induced
8
marker expression
8
cells potential
4
potential vitro
4
model predictive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!