Telomeres are the very ends of the chromosomes. They can be seen as natural double-strand breaks (DSB), specialized structures which prevent DSB repair and activation of DNA damage checkpoints. In somatic cells, attrition of telomeres occurs after each cell division until replicative senescence. In the absence of telomerase, telomeres shorten due to incomplete replication of the lagging strand at the very end of chromosome termini. Moreover, oxidative stress and accumulating reactive oxygen species (ROS) lead to an increased telomere shortening due to a less efficient repair of SSB in telomeres. The specialized structures at telomeres include proteins involved in both telomere maintenance and DNA repair. However when a telomere is damaged and has to be repaired, those proteins might fail to perform an accurate repair of the damage. This is the starting point of this article in which we first summarize the well-established relationships between DNA repair processes and maintenance of functional telomeres. We then examine how damaged telomeres would be processed, and show that irradiation alters telomere maintenance leading to possibly dramatic consequences. Our point is to suggest that those consequences are not restricted to the short term effects such as increased radiation-induced cell death. On the contrary, we postulate that the major impact of the loss of telomere integrity might occur in the long term, during multistep carcinogenesis. Its major role would be to act as an amplificator event unmasking in one single step recessive radiation-induced mutations among thousands of genes and providing cellular proliferative advantage. Moreover, the chromosomal instability generated by damaged telomeres will favour each step of the transformation from normal to fully transformed cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2007.09.011 | DOI Listing |
Aging (Albany NY)
January 2025
Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands.
Telomere length has been related to human health and ageing in multiple studies. However, these studies have analyzed a small set of variables, according to pre-formulated hypotheses. We used data from NHANES 1999-2002 to perform a preregistered cross-sectional analysis.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France.
Large vertebrate genomes duplicate by activating tens of thousands of DNA replication origins, irregularly spaced along the genome. The spatial and temporal regulation of the replication process is not yet fully understood. To investigate the DNA replication dynamics, we developed a methodology called RepliCorr, which uses the spatial correlation between replication patterns observed on stretched single-molecule DNA obtained by either DNA combing or high-throughput optical mapping.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Medicine, UofL Health Brown Cancer Center, University of Louisville, Louisville KY, 505 S Hancock St, Louisville, KY 40202, United States.
Time-resolved small-angle X-ray experiments are reported here that capture and quantify a previously unknown rapid collapse of the unfolded oligonucleotide as an early step in the folding of hybrid 1 and hybrid 2 telomeric G-quadruplex structures. The rapid collapse, initiated by a pH jump, is characterized by an exponential decrease in the radius of gyration from 24.3 to 12.
View Article and Find Full Text PDFFEMS Yeast Res
January 2025
Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile.
Lager beer is traditionally fermented using Saccharomyces pastorianus. However, the limited availability of lager yeast strains restricts the potential range of beer profiles. Recently, Saccharomyces eubayanus strains showed the potential to impart novel aromas to beer, with slower fermentation rates than commercial strains.
View Article and Find Full Text PDFAnn Am Thorac Soc
January 2025
Hangzhou Medical College, Hangzhou, China;
Rationale: Tobacco smoking is a well-established risk factor for idiopathic pulmonary fibrosis (IPF), yet the influence of early-life tobacco exposure on future IPF risk remains poorly understood.
Objectives: To test the hypothesis that early-life tobacco exposure may elevate the risk of developing IPF, with this effect potentially modified by genetic susceptibility to IPF and mediated through accelerated biological aging.
Methods: Using data from over 430,000 participants in the UK Biobank, we performed a prospective cohort study to examine the associations of maternal smoking around birth and age of smoking initiation with IPF risk.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!