The serine protease inhibitor (serpin) family can readily form long-chain polymers by a process that underlies a variety of diseases. We show here that monomers of plasma serpins alpha(1)-antitrypsin and antithrombin are stable on incubation with the rate-limiting step in their polymerisation being the formation of the initial dimer. Once formed, the dimers readily interlink to form tetramers and can bind monomers to form trimers and longer oligomers. Cleavage of the only exposed reactive loop, in unit I of the dimers, prevents their interlinkage, but these cleaved dimers can still link to monomers. The rapid binding by the cleaved dimers of a peptide specific to the lower half of beta-sheet A of the molecule indicates the ready opening of this beta-sheet in unit II of the dimers. The failure of the cleaved dimers to bind peptide-complexed monomers, together with the relative inaccessibility of the P14 hinge residue in the oligomers, is evidence that partial insertion of the reactive loop into its own A-sheet is required for polymer formation. We propose that serpin dimers initiate and propagate polymerisation by having one exposed loop with an optimal conformation as a beta-strand donor and a readily opened beta-sheet as an acceptor. The sequential reformation of these activated beta-interfaces as the oligomer extends, molecule by molecule, provides a model for the fibril and amyloid formation of conformational diseases in general as well as for the infectivity of prion encephalopathies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2007.10.055 | DOI Listing |
Nat Commun
March 2025
École Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015, Lausanne, Switzerland.
Receptor binding of TGF-β and related ligands such as Activin-A requires cleavage of a furin site in their dimeric precursor proteins. Melanoma cells cleave one Activin-A subunit independently of furin and related proprotein convertases, raising questions of how this half-processed intermediate is generated and whether it influences tumor growth. Here, an siRNA library screen for proteases mediating this furin-independent "hemicleavage" identifies kallikrein (Klk)-8.
View Article and Find Full Text PDFNucleic Acids Res
February 2025
Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310000, China.
Antisense oligonucleotides (ASOs) and small interfering RNA (siRNA) therapeutics highlight the power of oligonucleotides in silencing disease-causing messenger RNAs (mRNAs). Another promising class of gene-silencing oligonucleotides is RNA-cleaving nucleic acid enzymes, which offer the potential for allele-specific RNA inhibition with greater precision than ASOs and siRNAs. Herein, we chemically evolved the nucleolytic DNA enzyme (DNAzyme) 10-23, by incorporating the modifications that are essential to the success of ASO drugs, including 2'-fluoro, 2'-O-methyl, and 2'-O-methoxyethyl RNA analogues, and backbone phosphorothioate, to enhance catalytic efficiency by promoting RNA substrate binding and preventing dimerization of 10-23.
View Article and Find Full Text PDFAcc Chem Res
March 2025
Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom.
ConspectusSelective oxidation with molecular oxygen is one of the most appealing approaches to functionalization of organic molecules and, yet at the same time, one of the most challenging reactions facing organic synthesis due to poor selectivity control. Molecular oxygen is a green and inexpensive oxidant, producing water as the only byproduct in oxidation. Not surprisingly, it has been used in the manufacturing of many commodity chemicals in the industry.
View Article and Find Full Text PDFNature
February 2025
Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Meiotic recombination starts with SPO11 generation of DNA double-strand breaks (DSBs). SPO11 is critical for meiosis in most species, but it generates dangerous DSBs with mutagenic and gametocidal potential. Cells must therefore utilize the beneficial functions of SPO11 while minimizing its risks-how they do so remains poorly understood.
View Article and Find Full Text PDFNat Commun
February 2025
Department of Medicine A, University Medicine Greifswald, Greifswald, Germany.
Acute pancreatitis (AP) is characterised by self-digestion of the pancreas by its own proteases. This pathophysiological initiating event in AP occurs inside pancreatic acinar cells where intrapancreatic trypsinogen becomes prematurely activated by cathepsin B (CTSB), and induces the digestive protease cascade, while cathepsin L (CTSL) degrades trypsin and trypsinogen and therefore prevents the development of AP. These proteases are located in the secretory compartment of acinar cells together with cystatin C (CST3), an endogenous inhibitor of CTSB and CTSL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!