Subtilase cytotoxin (SubAB) is a AB(5) type toxin produced by Shiga-toxigenic Escherichia coli, which exhibits cytotoxicity to Vero cells. SubAB B subunit binds to toxin receptors on the cell surface, whereas the A subunit is a subtilase-like serine protease that specifically cleaves chaperone BiP/Grp78. As noted previously, SubAB caused inhibition of protein synthesis. We now show that the inhibition of protein synthesis was transient and occurred as a result of ER stress induced by cleavage of BiP; it was closely associated with phosphorylation of double-stranded RNA-activated protein kinase-like ER kinase (PERK) and eukaryotic initiation factor-2alpha (eIF2alpha). The phosphorylation of PERK and eIF2alpha was maximal at 30-60 min and then returned to the control level. Protein synthesis after treatment of cells with SubAB was suppressed for 2 h and recovered, followed by induction of stress-inducible C/EBP-homologous protein (CHOP). BiP degradation continued, however, even after protein synthesis recovered. SubAB-treated cells showed cell cycle arrest in G1 phase, which may result from cyclin D1 downregulation caused by both SubAB-induced translational inhibition and continuous prolonged proteasomal degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3021990PMC
http://dx.doi.org/10.1111/j.1462-5822.2007.01094.xDOI Listing

Publication Analysis

Top Keywords

protein synthesis
20
subtilase cytotoxin
8
produced shiga-toxigenic
8
shiga-toxigenic escherichia
8
escherichia coli
8
vero cells
8
cell cycle
8
cycle arrest
8
cells subab
8
inhibition protein
8

Similar Publications

Planiliza haematocheilus, a teleostan species noted for its ecological adaptability and economic significance, thrives in both freshwater and marine environments. This study presents a novel chromosome-level genome assembly through Hi-C, PacBio CCS, and Illumina sequencing methods. The assembled genome has a final size of 651.

View Article and Find Full Text PDF

Rare inherited diseases caused by mutations in the copper transporters (CTR1) or induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that produced a metabolic shift favoring glycolysis over oxidative phosphorylation.

View Article and Find Full Text PDF

Glycolysis is a conserved metabolic pathway that converts glucose into pyruvate in the cytosol, producing ATP and NADH. In and several other apicomplexan parasites, some glycolytic enzymes have isoforms located in their plastid (called the apicoplast). In this organelle, glycolytic intermediates like glyceraldehyde 3-phosphate (GAP) and dihydroxyacetone phosphate (DHAP) are imported from the cytosol and further metabolized, providing ATP, reducing power, and precursors for anabolic pathways such as isoprenoid synthesis.

View Article and Find Full Text PDF

is one of the commonly used hosts for heterologous enzyme expression, depending on media rich in carbon, nitrogen, and phosphate sources for optimal growth and enzyme production. Interestingly, our investigation of maltotetraose-forming amylase, a key enzyme for efficient maltotetraose synthesis, revealed that phosphate limitation significantly enhances the growth rate and production of heterologous enzymes in recombinant . Under phosphate-limited conditions in a 15 L fermenter, the enzyme activity reached 679.

View Article and Find Full Text PDF

Spermidine enhances the heat tolerance of by promoting mitochondrial respiration driven by fatty acid β-oxidation.

Appl Environ Microbiol

January 2025

Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China.

Unlabelled: High temperature is an unavoidable environmental stress that generally exerts detrimental effects on organisms and has widespread effects on metabolism. Spermidine is an important member of the polyamines family and is involved in a range of abiotic stress responses in plants. Mitochondria play an essential role in cellular homeostasis and are key components of the stress response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!