Actin nucleation is the rate-limiting step in actin assembly and is regulated by actin-binding proteins and signal transduction molecules. Salmonella enterica serovar Typhimurium exploits actin dynamics by reorganizing the host actin cytoskeleton to facilitate its own uptake. SipC is a Salmonella actin-binding protein that nucleates actin filament formation in vitro. The molecular mechanism by which SipC nucleates actin is not known. We show here that SipC(199-409) forms multimers to promote actin nucleation. We found that wild-type SipC(199-409) forms dimers and multimers while SipC(199-409)#1, a nucleation mutant, is less efficient in dimer and multimer formation. Biochemical analysis suggested that SipC(199-409) might form parallel dimers in an extended conformation. Furthermore, a mutant Salmonella strain that was defective in forming the SipC multimer and deficient in actin nucleation failed to cause severe colitis in a mouse model. These results allow us to present a model in which SipC forms multimers to promote actin nucleation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2958.2007.06024.xDOI Listing

Publication Analysis

Top Keywords

actin nucleation
20
actin
10
nucleates actin
8
sipc199-409 forms
8
forms multimers
8
multimers promote
8
promote actin
8
nucleation
6
sipc
5
sipc multimerization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!