Vibrio cholerae, the causative agent of the human disease cholera, uses cell-to-cell communication to control pathogenicity and biofilm formation. This process, known as quorum sensing, relies on the secretion and detection of signalling molecules called autoinducers. At low cell density V. cholerae activates the expression of virulence factors and forms biofilms. At high cell density the accumulation of two quorum-sensing autoinducers represses these traits. These two autoinducers, cholerae autoinducer-1 (CAI-1) and autoinducer-2 (AI-2), function synergistically to control gene regulation, although CAI-1 is the stronger of the two signals. V. cholerae AI-2 is the furanosyl borate diester (2S,4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran borate. Here we describe the purification of CAI-1 and identify the molecule as (S)-3-hydroxytridecan-4-one, a new type of bacterial autoinducer. We provide a synthetic route to both the R and S isomers of CAI-1 as well as simple homologues, and we evaluate their relative activities. Synthetic (S)-3-hydroxytridecan-4-one functions as effectively as natural CAI-1 in repressing production of the canonical virulence factor TCP (toxin co-regulated pilus). These findings suggest that CAI-1 could be used as a therapy to prevent cholera infection and, furthermore, that strategies to manipulate bacterial quorum sensing hold promise in the clinical arena.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature06284 | DOI Listing |
Sci Rep
January 2025
Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, 751023, Odisha, India.
This research delves into the evolving dynamics of antibiogram trends, the diversity of antibiotic resistance genes and antibiotic efficacy against Vibrio cholerae strains that triggered the cholera outbreak 2022 in Odisha, India. The study will provide valuable insights managing antimicrobial resistance during cholera outbreaks. Eighty V.
View Article and Find Full Text PDFNat Commun
January 2025
Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France.
The replication of the two chromosomes in the pathogenic bacterium Vibrio cholerae is coordinated by the binding of initiator protein RctB to a checkpoint sequence, crtS. Replication of crtS on the primary chromosome (Chr1) triggers replication of the secondary chromosome (Chr2), but the details are poorly understood. Here, we analyze RctB binding patterns in the V.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Advanced Analysis Data Center, Korea Institute of Science and Technology, Hwarang-ro 14-5, Seongbuk-gu, Seoul 02792, Republic of Korea.
Riboswitches are RNAs that recognize ligands and regulate gene expression. They are typically located in the untranslated region of bacterial messenger RNA and consist of an aptamer and an expression platform. In this study, we examine the folding pathway of the Vc2 (Vibrio cholerae) riboswitch aptamer domain, which targets the bacterial secondary messenger cyclic-di-GMP.
View Article and Find Full Text PDFClin Case Rep
January 2025
Division of Infectious Diseases, Department of Medicine University of Miami Miller School of Medicine Miami Florida USA.
Physicians should consider non-O1, non-O139 (NOVC) in the differential diagnosis of cellulitis complicated by sepsis, especially in immunocompromised patients when potential exposure exists. Due to the pathogen's potential for severe infections and rising incidence from environmental changes, we emphasize the need for increased awareness and appropriate treatment guidelines.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Vibrio Reference Laboratory, Bureau of Microbial Hazards, Health Canada, Ottawa, ON, Canada.
Two methods were compared for their ability to accurately identify Vibrio species of interest: whole genome sequencing as the reference method and MALDI-TOF MS (matrix-assisted laser desorption/ionization-time of flight mass spectrometry) proteome fingerprinting. The accuracy of mass spectrometry-based identification method was evaluated for its ability to accurately identify isolates of Vibrio cholerae and Vibrio parahaemolyticus. Identification result of each isolate obtained by mass spectrometry was compared to identification by whole genome sequencing (WGS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!