AMP-activated protein kinase (AMPK), activated by an increase in intracellular AMP-to-ATP ratio, stimulates pathways that can restore ATP levels. We tested the hypothesis that AMPK activation influences extracellular fluid (ECF) K(+) homeostasis. In conscious rats, AMPK was activated with 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) infusion: 38.4 mg x kg bolus then 4 mg x kg(-1) x min(-1) infusion. Plasma [K(+)] and [glucose] both dropped at 1 h of AICAR infusion and [K(+)] dropped to 3.3 +/- 0.04 mM by 3 h, linearly related to the increase in muscle AMPK phosphorylation. AICAR treatment did not increase urinary K(+) excretion. AICAR lowered [K(+)] whether plasma [K(+)] was chronically elevated or lowered. The K(+) infusion rate needed to maintain baseline plasma [K(+)] reached 15.7 +/- 1.3 micromol K(+) x kg(-1) x min(-1) between 120 and 180 min AICAR infusion. In mice expressing a dominant inhibitory form of AMPK in the muscle (Tg-KD1), baseline [K(+)] was not different from controls (4.2 +/- 0.1 mM), but the fall in plasma [K(+)] in response to AICAR (0.25 g/kg) was blunted: [K(+)] fell to 3.6 +/- 0.1 in controls and to 3.9 +/- 0.1 mM in Tg-KD1, suggesting that ECF K(+) redistributes, at least in part, to muscle ICF. In summary, these findings illustrate that activation of AMPK activity with AICAR provokes a significant fall in plasma [K(+)] and suggest a novel mechanism for redistributing K(+) from ECF to ICF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.00464.2007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!