Effect of a laser irradiation on the vascularisation of safety and X-ray radiated bone.

Annu Int Conf IEEE Eng Med Biol Soc

INSERM French National Institute of Health and Medical Research, Pavillon Vancostenobel, Lille University Hospital CH&U, 59037 Lille Cedex, France.

Published: March 2008

Thermal preconditioning induces a cytoprotective effect and promotes tissue recovering. Laser is an appropriated method to generate a controlled and reproducible heating. Bone healing, a crucial challenge in medicine, is affected by X-ray radiation which induces a chronic antiangiogenic effect. So, this study aims to investigate the role of laser preconditioning on the vascularisation of bone after X-ray radiation. An optical bone chamber allowed the study of the vascularization process. The vascular density (VD) was determined using image processing. A longitudinal study was performed on 20 rabbits divided in four groups: #1: control group (n=5); #2: laser irradiation alone (diode laser 810nm, fluence= 48J/cm2) (n=5). #3: X-ray radiation (18.75Gy) alone (n=5), #4: laser preconditioning 24 hours before a X-ray radiation (n=5). VD remained stable during 12-week follow up for groups #1 and #2. X-ray radiation lead to an important decrease of the superficial bone vascularization in group #3. The decrease of the vascularization was limited in group #4 highlighting a different evolution between group #3 and #4. Those results were confirmed by histological analysis. Our preliminary findings show that laser preconditioning preserves vascularization in X-ray radiated bone site, outlining a novel approach for the bone healing in which the vascular supply has been injured.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2007.4353677DOI Listing

Publication Analysis

Top Keywords

x-ray radiation
20
laser preconditioning
12
laser irradiation
8
x-ray radiated
8
radiated bone
8
bone healing
8
n=5 laser
8
laser
7
x-ray
7
bone
7

Similar Publications

Non-invasive electron paramagnetic resonance imaging detects tumor redox imbalance induced by ferroptosis.

Redox Rep

December 2025

Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.

Targeting ferroptosis, cell death caused by the iron-dependent accumulation of lipid peroxides, and disruption of the redox balance are promising strategies in cancer therapy owing to the physiological characteristics of cancer cells. However, the detection of ferroptosis using imaging remains challenging. We previously reported that redox maps showing the reduction power per unit time of implanted tumor tissues via non-invasive redox imaging using a novel, compact, and portable electron paramagnetic resonance imaging (EPRI) device could be compared with tumor tissue sections.

View Article and Find Full Text PDF

How I Do It: Management of Pleural-attached Pulmonary Nodules in Low-Dose CT Screening for Lung Cancer.

Radiology

January 2025

From the Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 (Y.Z., D.F.Y., C.I.H.); and Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (Y.Z.).

Lung cancer is the leading cause of cancer deaths globally. In various trials, the ability of low-dose CT screening to diagnose early lung cancers leads to high cure rates. It is widely accepted that the potential benefits of low-dose CT screening for lung cancer outweigh the harms.

View Article and Find Full Text PDF

CT, MRI, and FDG PET/CT in the Assessment of Lymph Node Involvement in Pediatric Hodgkin Lymphoma: An Expert Consensus Definition by an International Collaboration on Staging Evaluation and Response Criteria Harmonization for Children, Adolescent, and Young Adult Hodgkin Lymphoma (SEARCH for CAYAHL).

Radiology

January 2025

From the Department of Radiology, University Hospital Halle, Ernst-Grube-Strasse 40, 06120 Halle (Saale), Germany (D.S., J.S., J.M.B.); Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany (L.K., T.W.G., R.K.); Diagnostic Imaging and Pediatrics, Warren Alpert Medical School, Brown University, Providence, RI (K.M.M.); Department of Pediatric Radiology, Imaging and Radiation Oncology, Core-Rhode Island, Providence, RI (K.M.M.); Department of Oncology, St Jude Children's Research Hospital, Memphis, Tenn (J.E.F.); Department of Pediatric Hematology and Oncology, University Hospital Giessen-Marburg, Giessen, Germany (C.M.K., D.K.); Medical Faculty of the Martin Luther University of Halle-Wittenberg, Halle (Saale) Germany (C.M.K.); Department of Radiology, University of Wisconsin-Madison, Madison, Wis (S.Y.C.); Roswell Park Comprehensive Cancer Center, Buffalo, NY (K.M.K.); Department of Radiation Oncology, Medical Faculty of the Martin-Luther-University, Halle (Saale), Germany (T.P., D.V.); Department of Radiation Oncology, Mayo Clinic-Jacksonville, Jacksonville, Fla (B.S.H.); Department of Radio-Oncology, Medical University Vienna, Vienna, Austria (K.D.); and Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Mass (S.D.V.).

Staging of pediatric Hodgkin lymphoma is currently based on the Ann Arbor classification, incorporating the Cotswold modifications and the Lugano classification. The Cotswold modifications provide guidelines for the use of CT and MRI. The Lugano classification emphasizes the importance of CT and PET/CT in evaluating both Hodgkin lymphoma and non-Hodgkin lymphoma but focuses on adult patients.

View Article and Find Full Text PDF

Background Detection and segmentation of lung tumors on CT scans are critical for monitoring cancer progression, evaluating treatment responses, and planning radiation therapy; however, manual delineation is labor-intensive and subject to physician variability. Purpose To develop and evaluate an ensemble deep learning model for automating identification and segmentation of lung tumors on CT scans. Materials and Methods A retrospective study was conducted between July 2019 and November 2024 using a large dataset of CT simulation scans and clinical lung tumor segmentations from radiotherapy plans.

View Article and Find Full Text PDF

Background: Gastric accommodation (GA) testing is gaining clinical recognition as novel and minimally invasive modalities emerge. We investigated the feasibility of hybrid nuclear imaging volumetry (SPECT/CT) and combined high-resolution manometry-nutrient drink test (HRM-NDT) to assess GA.

Methods: In this non-randomized pilot study, [Tc]NaTcO gastric SPECT/CT (250 mL protocol) and proximal gastric HRM-NDT (~60 mL/min protocol) were performed separately within 30 days using Ensure Gold test meal (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!