An electrical impedance spectroscopy system for breast cancer detection.

Annu Int Conf IEEE Eng Med Biol Soc

Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

Published: March 2008

This paper describes Rensselaer's ACT 4 electrical impedance tomography system which has been developed for breast cancer detection. ACT 4 acquires electrical impedance data at a set of discrete frequencies in the range from 3.33 kHz to 1 MHz and can support up to 72 electrodes. The instrument applies either voltages or currents to all the electrodes simultaneously and measures the resulting currents and/or voltages. Radiolucent electrode arrays are applied to the compression plates of an x-ray mammography system for collecting impedance data in register with x-ray images. The analog front-end electronics are supported with a distributed digital system, including a computer, Digital Signal Processors (DSPs) and Field-Programmable Gate Arrays (FPGAs). A Microsoft Visual C/C++ -based user interface controls the system operation. The overall system architecture is presented as well as performance results.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2007.4353251DOI Listing

Publication Analysis

Top Keywords

electrical impedance
12
breast cancer
8
cancer detection
8
impedance data
8
system
6
impedance spectroscopy
4
spectroscopy system
4
system breast
4
detection paper
4
paper describes
4

Similar Publications

Background: The phase angle (PhA) in bioelectrical impedance analysis (BIA) reflects the cell membrane integrity or body fluid equilibrium. We examined how the PhA aligns with previously known markers of acute heart failure (HF) and assessed its value as a screening tool.

Methods: PhA was measured in 50 patients with HF and 20 non-HF controls along with the edema index (EI), another BIA parameter suggestive of edema.

View Article and Find Full Text PDF

This study employs electrical resistivity tomography (ERT) to experimentally investigate the migration characteristics of light non-aqueous phase liquids (LNAPL) under various groundwater conditions. Through cross-hole measurements and time-lapse inversion, the migration process of LNAPL under three scenarios-unsaturated conditions, constant groundwater levels, and declining water levels-was systematically analyzed. The results indicate that LNAPL migration behavior exhibits significant differences under different conditions.

View Article and Find Full Text PDF

Introduction/aims: Spirometry is the conventional means to measure lung function in amyotrophic lateral sclerosis (ALS), but is dependent on patient effort and bulbar strength. We aimed to use electric impedance tomography (EIT), an emerging non-invasive imaging modality, to measure dynamic lung volume changes.

Methods: Twenty-one patients with ALS underwent sitting and supine spirometry for forced vital capacity (FVC), and sitting and supine EIT.

View Article and Find Full Text PDF

In this work, a series of BaMnCuO samples (x: 1, 0.9, 0.8, and 0.

View Article and Find Full Text PDF

The ability to control and manipulate biological fluids within microchannels is a fundamental challenge in biological diagnosis and pharmaceutical analyses, particularly when buffers with very high ionic strength are used. In this study, we investigate the numerical and experimental study of fluidic biochips driven by ac electrothermal flow for controlling and manipulating biological samples inside a microchannel, e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!