Goldmann applanation tonometry is commonly used for measuring IOP (IntraOcular Pressure) to diagnose glaucoma. However, the measured IOP by the applanation tonometry is valid only under the assumption that all the subjects have the same structural eye stiffness. Abnormal eye stiffness makes abnormal corneal deformation and thus the current applanation tonometer misestimates the IOP. This study challenges to measure the eye stiffness in vivo with a non-invasive approach for detecting the abnormal deformation. The deformation of the cornea and the contact area between the probe and the cornea are simultaneously captured by cameras during the experiment. Experimental results show that some subjects have different relationship among the force, the displacement and the contact area even with same IOP. The proposed eye stiffness measurement can help detecting the abnormal deformation and the eyes with misestimated IOP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2007.4352905 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States.
Purpose: To study the roles of tubulin acetylation and cyclic mechanical stretch (CMS) in trabecular meshwork (TM) cells and their impact on outflow pathway physiology and pathology.
Methods: Primary TM cell cultures were subjected to CMS (8% elongation, 24 hours), and acetylated α-tubulin at lysine 40 (Ac-TUBA4) was assessed by western blotting and immunofluorescence. Enzymes regulating tubulin acetylation were identified via siRNA-mediated knockdowns of ATAT1, HDAC6, and SIRT2.
Heliyon
July 2024
Department of Ultrasound, Laibin People's Hospital, Laibin, Guangxi, China.
Objective: This study aimed to evaluate whether lacrimal gland tissue stiffness can aid in diagnosing dry eye disease (DED) using shear wave elastography (SWE). We also aimed to assess the correlation between the subjective symptoms of ocular strain, SWE values, and other ocular examination findings (Schirmer's test and tear film breakup time [TBUT]) contributing to the diagnosis of DED.
Methods: This cross-sectional study recruited 300 participants who were engaged in video display terminal (VDT) work and had been diagnosed with DED by an ophthalmologist for more than one year, and 100 healthy participants without DED symptoms, from August 2020 to December 2021.
Graefes Arch Clin Exp Ophthalmol
January 2025
Department of Ophthalmology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200001, China.
Purpose: To evaluate the posterior scleral stiffness of different regions in high myopic eyes and to explore its associations with macular choroidal and peripapillary retinal nerve fiber layer (pRNFL) thickness and vasculature.
Methods: Thirty subjects with high myopic eyes and 30 subjects with low myopic eyes were included in this study. The elastic modulus of the macular and peripapillary sclera at the temporal, nasal, superior and inferior regions were determined via shear wave elastography (SWE).
Cureus
December 2024
Ophthalmology, Medical School, Institute of Vision and Optics, University of Crete, Heraklion, GRC.
Purpose: Scleral cross-linking (SXL) with ultraviolet A (UVA) and riboflavin has already been used in laboratory studies for scleral stiffness increase as a potential treatment for progressive myopia and scleral ectasia. This study aims to investigate whether the regional application of scleral cross-linking (SXL) with ultraviolet A (UVA) and riboflavin in fresh porcine eye globes affects the ocular rigidity as well as its impact on intraocular pressure after an induced acute increase in the volume of intraocular fluid.
Methods: The study included two groups of fresh porcine eyes: an experimental group (n=20) that underwent scleral cross-linking (SXL) with riboflavin and UVA applied to the posterior sclera and a control group (n=20) that did not receive SXL treatment.
Invest Ophthalmol Vis Sci
January 2025
Department of Physics, Boise State University, Boise, Idaho, United States.
Purpose: To elucidate the mechanical properties of the bovine lens cortical membrane (CM), the nuclear membrane (NM) containing cholesterol bilayer domains (CBDs), and whole bovine lenses.
Methods: The total lipids (lipids plus cholesterol) from the cortex and nucleus of a single bovine lens were isolated using the monophasic methanol extraction method. Supported CMs and NMs were prepared from total lipids extracted from the cortex and nucleus, respectively, using a rapid solvent exchange method and probe-tip sonication, followed by the fusion of unilamellar vesicles on a flat, freshly cleaved mica surface.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!