Tinnitus is the perception of phantom sounds in the ears or in the head. Sound therapy techniques for tinnitus have been proposed. To account for mechanisms of tinnitus generation and the clinical effects of sound therapies from the viewpoint of neural engineering, we have proposed a plastic neural network model for the human auditory system. We found that this model has a bistable state, i.e., a stable oscillatory state and a stable equilibrium (non-oscillatory) state coexist at a certain parameter region. We also found that the oscillation can be inhibited by supplying sinusoidal stimulus, which is hypothesized as sound for treatment of tinnitus, to the model. By hypothesizing that the oscillation and the equilibrium correspond to generation and inhibition of tinnitus, respectively, we reported that these phenomena could explain the fact that the habituated human auditory system temporarily halts perception of tinnitus following sound therapy. This paper describes dynamical properties of the model and inhibition of the oscillation for two kinds of noise stimuli which correspond to sound for treatment of tinnitus in clinical. Through numerical simulations we found that adequate noise stimulus can inhibits the oscillation.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2007.4352813DOI Listing

Publication Analysis

Top Keywords

dynamical properties
8
plastic neural
8
neural network
8
network model
8
tinnitus
8
inhibition oscillation
8
noise stimulus
8
sound therapy
8
human auditory
8
auditory system
8

Similar Publications

Developing a reliable procedure for the growth of III-V nanowires (NW) on silicon (Si) substrates remains a significant challenge, as current methods rely on trial-and-error approaches with varying interpretations of critical process steps such as sample preparation, Au-Si alloy formation in the growth reactor, and nanowire alignment. Addressing these challenges is essential for enabling high-performance electronic and optoelectronic devices that combine the superior properties of III-V NW semiconductors with the well-established Si-based technology. Combining conventional scalable growth methods, such as Metalorganic Chemical Vapor Deposition (MOCVD) with in situ characterization using Environmental Transmission Electron Microscopy (ETEM-MOCVD) enables a deeper understanding of the growth dynamics, if that knowledge is transferable to the scalable processes.

View Article and Find Full Text PDF

Solvent-modulated preparation of lead-free CsBiIpolycrystalline film for high-performance photodetectors.

Nanotechnology

January 2025

School of Instrumentation Science and Opto-electronics Engineering, Beijing Information Science and Technology University, 12 Qinghe Xiaoying East Road, Xisanqi Street, Haidian District, Beijing, Beijing, 100192, CHINA.

Lead-free cesium bismuth iodide (CsBiI) perovskite exhibits extraordinary optoelectronic properties and attractive potential in various optoelectronic devices, especially the application for photodetectors. However, most CsBiIphotodetectors demonstrated poor detection performance due to the difficulty in obtaining high-quality polycrystalline films. Therefore, it makes sense to modulate the preparation of high-quality CsBiIpolycrystalline films and expand its applications.

View Article and Find Full Text PDF

A Set of Three Gd Spin Labels with Methanethiosulfonyl Groups for Bioconjugation Covering a Wide Range of EPR Line Widths.

J Org Chem

January 2025

Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany.

Spin labels based on Gd complexes are important tools for the elucidation of the structure, dynamics and interaction of biomolecules by electron paramagnetic resonance (EPR) spectroscopy. Their EPR spectroscopic properties line width and relaxation times influence their performance in a particular application. To be able to apply a complex well-suited for a specific application, a set of Gd complexes with different EPR spectroscopic properties ready-made for spin labeling will be highly useful.

View Article and Find Full Text PDF

Conjugate Gradient (CG) methods are widely used for solving large-scale nonlinear systems of equations arising in various real-life applications due to their efficiency in employing vector operations. However, the global convergence analysis of CG methods remains a significant challenge. In response, this study proposes scaled versions of CG parameters based on the renowned Barzilai-Borwein approach for solving convex-constrained monotone nonlinear equations.

View Article and Find Full Text PDF

Rice blast, caused by Magnaporthe oryzae, is one of the most destructive fungal diseases in rice, resulting in major economic losses worldwide. Genetic and genomic studies have identified key genes and proteins, such as AvrPik variants and MAX proteins, that are crucial for the pathogen's virulence. These effector proteins interact with specific alleles of the Pik gene family on rice chromosome 11, modulating the host's immune response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!