Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper a sensorised polymer microgripper is presented which can be used as a suitable end effector on an endoscopic microinstrument for robot-assisted and possibly teleoperated surgery to enable the operator to receive haptic feedback information on the forces generated during the procedure. A novel tweezers- like haptic input device is also described, which gives the operator the ability to remotely feel these forces generated by grasping operations with the microgripper. This feedback is used to control the amount of force applied in manipulation of tissues during the procedure. The mechanical and electronic design of the microgripper, microinstrument and haptic tweezers is also presented and preliminary results detailed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2007.4352257 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!