AI Article Synopsis

Article Abstract

17beta-oestradiol (E(2)) may have a beneficial impact on the development of age-related diseases, in part through alpha and beta oestrogen receptors (ER) in glia. Tibolone, a synthetic steroid, could influence glial-mediated neuroprotection if agonist oestrogenic activity is demonstrable. We used the N20.1 mouse oligodendrocyte cell line as a glial cell model to evaluate the response of ERalpha and ERbeta through oestrogen-response element (ERE) and AP-1-driven reporters to E(2), 4-hydroxytamoxifen (4OHT) and to two tibolone metabolites, 3alpha-hydroxytibolone (3alpha-OH-Tib) and 3beta-hydroxytibolone (3beta-OH-Tib). In addition, we tested the activity of these same ligands through the endogenous ERalpha in human normal astrocytes. Because endogenous ER was not detected in the N20.1 cells, we tested the ability of exogenous ER to activate transcription in response to ligands (100 nM) using a transient cotransfection assay with an ERalpha expression vector. To test the antagonist activity of 3alpha-OH-Tib and 3beta-OH-Tib, we used them in combination with E(2) (10(-8) M), at concentrations of 10(-7) M and 10(-6) M. The human normal astrocytes were treated similarly, with the exception that no ER-encoding DNA was used. Specific ER ligand mediated activity was shown using the E(2) antagonist ICI 182 780 and the pSG5 empty vector. E(2), 3alpha-OH-Tib, and 3beta-OH-Tib stimulated ERalpha on an ERE-promoter at each concentration (P < 0.001) but not at an AP-1-driven promoter. 4OHT was an effective antagonist, but did not exhibit agonist activity on the ERE-driven promoter. 4OHT was an effective agonist through ERalpha on an AP-1-driven promoter. 3alpha-OH-Tib and 3beta-OH-Tib were not effective antagonists of E(2). Both metabolites acted through the ER because the addition of an E(2) antagonist blocked their activity. These results show that 3alpha-OH-Tib and 3beta-OH-Tib exert agonist activity, yet lack antagonist or additive activity, through the ERalpha and ERbeta on an ERE-driven but not on an AP-1-driven promoter in a glial cell model and in normal human astrocytes. This contrasts with the effects of 4OHT, which exerted little or no agonist activity, but reduced E(2)-stimulated activity through ERalpha on the ERE, in the same cells.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2826.2007.01611.xDOI Listing

Publication Analysis

Top Keywords

agonist activity
16
3alpha-oh-tib 3beta-oh-tib
16
ap-1-driven promoter
12
activity
10
oligodendrocyte cell
8
normal human
8
human astrocytes
8
glial cell
8
cell model
8
eralpha erbeta
8

Similar Publications

Role of Glucagon-Like Peptide-1 Receptor Agonists in People With Infertility and Pregnancy.

Obstet Gynecol

January 2025

Department of Obstetrics and Gynecology and the Division of Maternal Fetal Medicine, University of Kansas School of Medicine, Kansas City, Kansas.

Obesity is a chronic condition that causes significant morbidity and mortality in people in the United States and around the world. Traditional means of weight loss include diet, exercise, behavioral modifications, and surgery. New weight loss medications, glucagon-like peptide-1 receptor agonists, are revolutionizing the management of weight loss but have implications for fertility and pregnancy.

View Article and Find Full Text PDF

NMDA receptor ligands have therapeutic potential in neurological and psychiatric disorders. We designed ()-3-(5-thienyl)carboxamido-2-aminopropanoic acid derivatives with nanomolar agonist potencies at NMDA receptor subtypes (GluN12/A-D). These compounds are superagonists at GluN1/2C compared to glycine and partial to full agonists at GluN1/2A and GluN1/2D but display functional antagonism at GluN1/2B due to low agonist efficacy.

View Article and Find Full Text PDF

Graves' disease is caused by overactivation of the thyroid-stimulating hormone receptor (TSHR). One approach for its treatment may be the use of negative allosteric modulators (NAM) of TSHR, which normalize TSHR activity and do not cause thyroid hormone (TH) deficiency. The aim of the work was to study the effect of a new compound 5-amino-4-(4-bromophenyl)-2-(methylthio)thieno[2,3-d]pyrimidine-6-carboxylic acid N-tert-butylamide (TPY4) on the basal and TSH-stimulated TH production in cultured FRTL-5 thyrocytes and on basal and thyrotropin-releasing hormone (TRH)-stimulated TH levels in the blood of rats.

View Article and Find Full Text PDF

Lessons Learned: Intravenous paricalcitol did not improve the efficacy of pembrolizumab, likely related to the short half-life.

Background: Immunotherapy has limited benefit in the treatment of advanced pancreatic cancer with the tumor microenvironment playing a key role in immune resistance. In preclinical studies, vitamin D receptor (VDR) agonists have been shown to sensitize pancreatic tumors to PD-1 blockade.

View Article and Find Full Text PDF

EXO: A Dual-Mechanism Stimulator of Interferon Genes Activator for Cancer Immunotherapy.

ACS Nano

January 2025

Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.

As natural agonists of the stimulator of interferon genes (STING) protein, cyclic dinucleotides (CDNs) can activate the STING pathway, leading to the expression of type I interferons and various cytokines. Efficient activation of the STING pathway in antigen-presenting cells (APCs) and tumor cells is crucial for antitumor immune response. Tumor-derived exosomes can be effectively internalized by APCs and tumor cells and have excellent potential to deliver CDNs to the cytoplasm of APCs and tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!