Metabonomic evaluation of metabolic dysregulation in rats induced by PF 376304, a novel inhibitor of phosphoinositide 3-kinase.

Chem Res Toxicol

Metabonomics Evaluation Group and Drug Safety Research and Development, Pfizer Global Research and Development, Ann Arbor, MI 48105, USA.

Published: December 2007

Phosphoinositide 3-kinase (PI3K) is an enzyme fundamental to the regulation of various metabolic processes. Metabonomic studies were undertaken in order to gain mechanistic insight into significant, yet unexplained, toxicity issues associated with PF 376304, a nonspecific PI3K inhibitor under development for anti-inflammatory indications. Two experiments were conducted in which rats were given daily doses of up to 1000 mg of PF 376304/kg for as long as 7 days. Mortality rapidly ensued (within 72 h) at doses of >or=300 mg/kg. Doses of >or=100 mg/kg were associated with a profound but transient glucosuria. Despite the magnitude of this effect, within 72 h urinary glucose excretion in surviving animals returned to control levels even with continued dosing. Other metabolic effects associated with drug treatment included increased urinary beta-hydroxybutyrate and creatine and decreased citrate. A time-course study revealed elevated serum glucose within 1 h, followed by increases in serum insulin and decreases in serum triglycerides. Serum corticosterone was also significantly elevated within 1 h of treatment. All metabolic effects were largely reversed within 24 h of administration of the third daily dose and remained that way through day 7. The likely explanation for the onset of effects involves the role of PI3K in regulation of glucose at multiple points, but the reversal of the effects in the presence of continued exposure to the drug has not been explained. Finally, the data demonstrate the power of metabonomics technology in mechanistic toxicology investigations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/tx7002036DOI Listing

Publication Analysis

Top Keywords

phosphoinositide 3-kinase
8
metabolic effects
8
metabonomic evaluation
4
metabolic
4
evaluation metabolic
4
metabolic dysregulation
4
dysregulation rats
4
rats induced
4
induced 376304
4
376304 novel
4

Similar Publications

The epithelial-mesenchymal transition (EMT) assists in the acquisition of invasiveness, relapse, and resistance in non-small cell lung cancer (NSCLC) and can be caused by the signaling of transforming growth factor-β1 (TGF-β1) through Smad-mediated or Smad-independent pathways. (-)-Epigallocatechin-3-gallate (EGCG), a multifunctional cancer-preventing bioconstituent found in tea polyphenols, has been shown to repress TGF-β1-triggered EMT in the human NSCLC A549 cell line by inhibiting the activation of Smad2 and Erk1/2 or reducing the acetylation of Smad2 and Smad3. However, its impact on the Smad-independent pathway remains unclear.

View Article and Find Full Text PDF

This study investigates the role of flavonoid Icaritin (ICT) in estrogen-deficient ovariectomized (OVX) female mice by activating the Estrogen receptor (ER)/ Phosphatidylinositol 3-kinase (PI3K)/Protein kinase B (Akt) signaling pathway, potentially delaying Parkinson's disease (PD) progression post-castration. Seventy-five 8-week-old C57BL/6J female mice underwent ovariectomy, followed by MPTP (20 mg/kg) injection for 7 days. ICT (20 mg/kg) was administered for 14 days, and motor function was assessed using various behavioral tests.

View Article and Find Full Text PDF

PIK3R3 regulates differentiation and senescence of periodontal ligament stem cells and mitigates age-related alveolar bone loss by modulating FOXO1 expression.

J Adv Res

January 2025

Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Beijing 100081, China. Electronic address:

Introduction: Periodontal diseases are prevalent among middle-aged and elderly individuals. There's still no satisfactory solution for tooth loss caused by periodontal diseases. Human periodontal ligament stem cells (hPDLSCs) is a distinctive subgroup of mesenchymal stem cells, which play a crucial role in periodontal supportive tissues, but their application value hasn't been fully explored yet.

View Article and Find Full Text PDF

A promising future for breast cancer therapy with hydroxamic acid-based histone deacetylase inhibitors.

Bioorg Chem

January 2025

Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:

Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!