Behavioral and biochemical responses to d-amphetamine in MCH1 receptor knockout mice.

Synapse

Eli Lilly and Company, Neuroscience Discovery Research, Indianapolis, Indiana 46285, USA.

Published: February 2008

The melanin-concentrating hormone (MCH) system is anatomically and functionally interlaced with the mesocorticolimbic dopamine system. Therefore, we investigated whether MCH(1) receptor knockout (KO) mice are more susceptible than wild-type (WT) mice to psychostimulant-induced locomotor stimulation and sensitization, dopamine receptor-mediated phosphorylation events and c-fos expression within the frontal cortex and ventral striatum. MCH(1) receptor KO mice have 20% higher basal locomotor activity, are hypersensitive to the locomotor activating effects of d-amphetamine (1 mg/kg), and develop behavioral sensitization to a regimen of repeated d-amphetamine administration that does not induce sensitization in WT mice. In addition, d-amphetamine-mediated regulation of p44-mitogen activated protein kinase (MAPK) phosphorylation within the frontal cortex was significantly enhanced in MCH(1) receptor KO mice, when compared with WT mice. No significant genotype difference in the effects of d-amphetamine on MAPK phosphorylation events within the ventral striatum, phosphorylation at Ser(897) of the NR1 subunit of the NMDA receptor or Ca(2+) and cyclic AMP response-element binding-protein (CREB) at Ser(133) in the frontal cortex was detected. d-Amphetamine (3 mg/kg) increased c-fos expression within the frontal cortex in MCH(1) receptor KO mice, but not WT mice. There were no d-amphetamine-induced changes in c-fos expression within the ventromedial striatum in KO or WT mice. Overall, MCH(1) receptor KO mice are hypersensitive to the behavioral and molecular effects of the dopaminergic psychostimulant d-amphetamine. Increased frontal cortical MAPK phosphorylation and c-fos expression in MCH(1) receptor KO mice indicates that the MCH(1) receptor may be an important target for treating neuropsychiatric disorders characterized by frontal cortex dysfunction, including depression, attention deficit hyperactivity disorder (ADHD) and schizophrenia.

Download full-text PDF

Source
http://dx.doi.org/10.1002/syn.20473DOI Listing

Publication Analysis

Top Keywords

mch1 receptor
32
frontal cortex
20
receptor mice
20
c-fos expression
16
mice
12
mapk phosphorylation
12
receptor
9
mch1
8
receptor knockout
8
knockout mice
8

Similar Publications

Melanin-concentrating hormone receptor: A therapeutic target for novel anxiolytics.

Pharmacol Biochem Behav

September 2024

Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama, Saitama 331-9530, Japan; Chiba University Center for Forensic Mental Health, Chiba, Chiba 260-8670, Japan. Electronic address:

Anxiety disorders are chronic, disabling psychiatric disorders, and there is a growing medical need for the development of novel pharmacotherapeutic agents showing improved efficacy and an improved side effect profile as compared with the currently prescribed anxiolytic drugs. In the course of the search for next-generation anxiolytics, neuropeptide receptors have garnered interest as potential therapeutic targets, underscored by pivotal roles in modulating stress responses and findings from animal studies using pharmacological tools. Among these neuropeptide receptors, the type 1 receptor for melanin-concentrating hormone (MCH1), which has been demonstrated to be involved in an array of physiological processes, including the regulation of stress responses and affective states, has gained attraction as a therapeutic target for drugs used in the treatment of psychiatric disorders, including anxiety disorders.

View Article and Find Full Text PDF

New Findings: What is the central question of this study? Melanin-concentrating hormone (MCH) suppresses the hypercapnic chemoreflex: what is the mechanism by which this effect is produced? What is the main finding and its importance? MCH acting in the lateral hypothalamic area but not in the locus coeruleus in rats, in the light period, attenuates the hypercapnic chemoreflex. The data provide new insight into the role of MCH in the modulation of the hypercapnic ventilatory response.

Abstract: Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide involved in a broad range of homeostatic functions including regulation of the hypercapnic chemoreflex.

View Article and Find Full Text PDF

Hypothalamus-hippocampus circuitry regulates impulsivity via melanin-concentrating hormone.

Nat Commun

October 2019

Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.

Behavioral impulsivity is common in various psychiatric and metabolic disorders. Here we identify a hypothalamus to telencephalon neural pathway for regulating impulsivity involving communication from melanin-concentrating hormone (MCH)-expressing lateral hypothalamic neurons to the ventral hippocampus subregion (vHP). Results show that both site-specific upregulation (pharmacological or chemogenetic) and chronic downregulation (RNA interference) of MCH communication to the vHP increases impulsive responding in rats, indicating that perturbing this system in either direction elevates impulsivity.

View Article and Find Full Text PDF

Molecular docking analysis of twenty two phytoconstituents from , against seven targets of obesity like pancreatic lipase, fat and obesity protein (FTO protein), cannabinoid receptor, hormones as ghrelin, leptin and protein as SCH1 and MCH1 is detailed in this data article. Chemical structures of phytoconstituents were downloaded from PubChem and protein structures were retrieved from RCSB protein databank. Docking was performed using FlexX software Lead IT version 2.

View Article and Find Full Text PDF

Background: Hypothalamic neurotensin (Nts)-secreting neurons regulate fundamental physiological processes including metabolism and feeding. However, the role of Nts in modulation of locomotor activity, sleep, and arousal is unclear. We previously identified and characterized Nts neurons in the zebrafish hypothalamus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!