Purpose: The cerebral mechanisms underlying hepatic encephalopathy (HE) are poorly understood. Adenosine, a neuromodulator that pre- and postsynaptically modulates neuronal excitability and release of classical neurotransmitters via A(1) adenosine receptors (A(1)AR), is likely to be involved. The present study investigates changes of cerebral A(1)AR binding in cirrhotic patients by means of positron emission tomography (PET) and [(18)F]CPFPX, a novel selective A(1)AR antagonist.

Methods: PET was performed in cirrhotic patients (n = 10) and healthy volunteers (n = 10). Quantification of in vivo receptor density was done by Logan's non-invasive graphical analysis (pons as reference region). The outcome parameter was the apparent binding potential (aBP, proportional to B (max)/K (D)).

Results: Cortical and subcortical regions showed lower A(1)AR binding in cirrhotic patients than in controls. The aBP changes reached statistical significance vs healthy controls (p < 0.05, U test with Bonferroni-Holm adjustment for multiple comparisons) in cingulate cortex (-50.0%), precentral gyrus (-40.9%), postcentral gyrus (-38.6%), insular cortex (-38.6%), thalamus (-32.9%), parietal cortex (-31.7%), frontal cortex (-28.6), lateral temporal cortex (-28.2%), orbitofrontal cortex (-27.9%), occipital cortex (-24.6), putamen (-22.7%) and mesial temporal lobe (-22.4%).

Conclusion: Regional cerebral adenosinergic neuromodulation is heterogeneously altered in cirrhotic patients. The decrease of cerebral A(1)AR binding may further aggravate neurotransmitter imbalance at the synaptic cleft in cirrhosis and hepatic encephalopathy. Different pathomechanisms may account for these alterations including decrease of A(1)AR density or affinity, as well as blockade of the A(1)AR by endogenous adenosine or exogenous xanthines.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00259-007-0586-zDOI Listing

Publication Analysis

Top Keywords

cirrhotic patients
16
a1ar binding
12
adenosine receptors
8
a1ar
8
receptors a1ar
8
hepatic encephalopathy
8
cerebral a1ar
8
binding cirrhotic
8
cortex
7
cerebral
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!