Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aim of this study was to analyze the biomechanical consequences of patella bracing in order to evaluate possible mechanisms supporting its clinical application. The hypothesis is that the patellar bracing reduces patellofemoral pressure by influencing patellar and knee kinematics, and load distribution. Physiologic isokinetic knee extension motions were simulated on ten human knee cadaver specimens using a knee kinematic simulator. Joint kinematics were evaluated using an ultrasound-based motion analysis system and patellofemoral contact pressure was measured using a thin-film piezoresistive pressure measuring system. Infrapatellar tissue pressure was analyzed using a closed sensor-cell. Three different patella braces were fitted to the knee cadavers and their influence on the kinematic and kinetic biomechanical parameters were evaluated and compared to the physiologic situation. Patellar bracing resulted in a significant (p = 0.05) proximalization of the patella up to 3 mm. Depending on the type of brace used, a decrease in the infrapatellar fat pad pressure was found and the patellofemoral contact area was decreased significantly (p = 0.05) between 60 degrees of knee flexion and full extension (maximum 22%). Patella bracing significantly (p = 0.05) reduced the patellofemoral contact pressure an average of 10%, as well as the peak contact pressure which occurred. Patellar bracing significantly influences patella biomechanics in a reduction of the patellofemoral contact area and contact pressure as well as a decrease in the infrapatellar tissue pressure. The application of infrapatellar straps is suggested for the treatment and prevention of anterior knee pain, especially in high level sports.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00167-007-0428-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!