During the past decade, regenerative medicine has been the subject of intense interest due, in large part, to our growing knowledge of embryonic stem (ES) cell biology. ES cells give rise to cell lineages from the three primordial germ layers--endoderm, mesoderm, and ectoderm. This process needs to be channeled if these cells are to be differentiated efficiently and used subsequently for therapeutic purposes. Indeed, an important area of investigation involves directed differentiation to influence the lineage commitment of these pluripotent cells in vitro. Various strategies involving timely growth factor supplementation, cell co-cultures, and gene transfection are used to drive lineage specific emergence. The underlying goal is to control directly the center of gene expression and cellular programming--the nucleus. Gene expression is enabled, managed, and sustained by the collective actions and interactions of proteins found in the nucleus--the nuclear proteome--in response to extracellular signaling. Nuclear proteomics can inventory these nuclear proteins in differentiating cells and decipher their dynamics during cellular phenotypic commitment. This review details what is currently known about nuclear effectors of stem cell differentiation and describes emerging techniques in the discovery of nuclear proteomics that will illuminate new transcription factors and modulators of gene expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/scd.2007.0071 | DOI Listing |
Hepatol Int
January 2025
National Clinical Research Center for Digestive Disease, State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
Background: Our previous research demonstrated that growth differentiation factor 15 (GDF15) exhibited superior predictive capability for metabolic dysfunction-associated steatohepatitis (MASH) development with an AUC of 0.86 at 10 years before disease diagnosis. However, the specific pathways and molecular mechanisms associated with GDF15 expression during MASH development remain to be fully investigated in humans.
View Article and Find Full Text PDFStudies generating transcriptomics, proteomics, lipidomics, and metabolomics (colloquially referred to as "omics") data allow researchers to find biomarkers or molecular targets or understand complex biological structures and functions by identifying changes in biomolecule abundance and expression between experimental conditions. Omics data are multidimensional, and oftentimes summarization techniques such as principal component analysis (PCA) are used to identify high-level patterns in data. Though useful, these summaries do not allow exploration of detailed patterns in omics data that may have biological relevance.
View Article and Find Full Text PDFCell Oncol (Dordr)
January 2025
Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, PR China.
Purpose: Metabolic reprogramming, particularly the Warburg effect, plays a crucial role in the onset and progression of tumors. The ubiquitin-conjugating enzyme E2 Q2 (UBE2Q2) has been identified overexpressed in hepatocellular carcinoma (HCC). Our aim was to determine if UBE2Q2 plays a role in regulating glycolysis, contributing to the carcinogenesis of HCC.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
Mitochondria play a fundamental role in energy metabolism, particularly in high-energy-demand tissues such as skeletal muscle. Understanding the proteomic composition of mitochondria in these cells is crucial for elucidating the mechanisms underlying muscle physiology and pathology. However, effective isolation of mitochondria from primary human skeletal muscle cells has been challenging due to the complex cellular architecture and the propensity for contamination with other organelles.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou 450046, China. Electronic address:
Mounting evidence suggests that a number of host nuclear-resident proteins are indispensable for the replication of picornaviruses, a typical class of cytoplasmic RNA viruses. Host nucleocytoplasmic transport is often hijacked by viruses to promote their replication in the cytoplasm of infected cells, and suppress the innate immune response. However, little is known about the mechanisms by which Senecavirus A (SVA) manipulates nucleocytoplasmic trafficking events to promote infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!