We study the Heisenberg exchange couplings in polynuclear transition-metal clusters with strong spin frustration using a variety of theoretical techniques. We present results for a trinuclear Cr(III) molecule, a tetranuclear Fe(III) complex, and an octanuclear Fe(III) molecular magnet. We explore the physics of the exchange couplings in these systems using standard broken-symmetry (BS) techniques and a more recently developed constrained density functional theory (C-DFT) approach. The calculations show that the expected picture of localized spin moments on the metal centers is appropriate, and in each case C-DFT predicts coupling constant values in good agreement with experiment. Furthermore, we demonstrate that all of the C-DFT spin states for a given cluster can be reasonably described by a single Heisenberg Hamiltonian. These findings are significant in part because standard BS calculations are in conflict with the experiments on a number of key points. For example, BS-DFT predicts a doublet (rather than quartet) ground state for the Cr(III) cluster while for the Fe(III) complexes BS-DFT predicts some of the exchange couplings to be ferromagnetic whereas the experimentally derived couplings are all antiferromagnetic. Furthermore, for BS-DFT the best-fit exchange parameters can depend significantly on the set of spin configurations chosen. For example, by choosing configurations with Ms closer to Ms(max) the BS-DFT couplings can typically be made somewhat closer to the C-DFT and experimental results. Thus, in these cases, our results consistently support the experimental findings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic700871f | DOI Listing |
Nat Commun
January 2025
Department of Molecular Biosciences, University of South Florida, 4202 E Fowler Ave, Tampa, FL, 33620, USA.
Unraveling the signaling roles of intermediate complexes is pivotal for G protein-coupled receptor (GPCR) drug development. Despite hundreds of GPCR-Gαβγ structures, these snapshots primarily capture the fully activated complex. Consequently, the functions of intermediate GPCR-G protein complexes remain elusive.
View Article and Find Full Text PDFDalton Trans
January 2025
Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 30, 48149 Münster, Germany.
The cadmium-rich intermetallic compounds RhCd ( = Ca, Sr, Y, La-Nd, Sm-Lu) were synthesized from the elements in sealed tantalum tubes. The elements were reacted in an induction furnace and the samples were post-annealed to increase phase purity and crystallinity. The RhCd phases crystallize with the cubic CeCrAl type structure, space group 3̄.
View Article and Find Full Text PDFNPJ Comput Mater
January 2025
Computational Atomic-scale Materials Design (CAMD), Department of Physics, Technical University of Denmark, Kgs. Lyngby, Denmark.
We conduct a systematic investigation of the role of Hubbard U corrections in electronic structure calculations of two-dimensional (2D) materials containing 3 transition metals. Specifically, we use density functional theory (DFT) with the PBE and PBE+U approximations to calculate the crystal structure, band gaps, and magnetic parameters of 638 monolayers. Based on a comprehensive comparison to experiments we first establish that the inclusion of the U correction worsens the accuracy for the lattice constants.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore.
Amphiphilic polymers with distinct polarity differences, known as sharp polarity contrast polymers (SPCPs), have gained much attention for their ability to form micelles with low critical micelle concentrations (CMCs) and potential in anticancer drug delivery. This study addresses the limited research on structure-property relationships of SPCPs by developing various SPCPs and exploring their physicochemical properties and biological applications. Specifically, the superhydrophobic aliphatic palmitoyl (Pal) was coupled to the superhydrophilic zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (pMPC) to form Pal-pMPC diblock copolymers.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
This study investigates the motion of an electron in a Coulomb potential driven by an intense linearly polarized XUV laser pulse analyzed using Gordon-Volkov wave functions. The wave function is decomposed into spherical partial waves to model the scattered electron wave packet after the recollision with a proton. This interaction triggers high harmonic generation, producing coherent X-ray pulses with frequencies that are integer multiples of the XUV field.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!