Adsorption of benzene on coinage metals: a theoretical analysis using wavefunction-based methods.

J Phys Chem A

Lehrstuhl für Physikalische Chemie I, and Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780, Germany.

Published: December 2007

The interaction of benzene with a Ag(111) surface has been determined using reliable ab initio electronic structure calculations. The results are compared to a recent detailed analysis of the interaction of benzene with copper and gold surfaces, thus making it possible to derive a consistent picture for the electronic structure changes encountered when benzene is brought into contact with the densely packed coinage metal surfaces. To avoid the problems encountered when the presently most frequently employed computational approach, density functional theory (DFT), is applied to adsorbate systems where dispersion (or van der Waals) forces contribute substantially, we use a wavefunction-based approach. In this approach, the weak van der Waals interactions, which are dominated by correlation effects, are described using second-order perturbation theory. The surface dipole moment and the work function changes induced upon adsorption are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp076339qDOI Listing

Publication Analysis

Top Keywords

interaction benzene
8
electronic structure
8
van der
8
der waals
8
adsorption benzene
4
benzene coinage
4
coinage metals
4
metals theoretical
4
theoretical analysis
4
analysis wavefunction-based
4

Similar Publications

D-glucose-conjugated thioureas containing 2-aminopyrimidine as potential multitarget inhibitors for type 2 diabetes mellitus: Synthesis and biological activity study.

Comput Biol Med

January 2025

Faculty of Chemistry, University of Science (Vietnam National University, Hanoi), 19 Le Thanh Tong, Hoan Kiem, Ha Noi, Viet Nam; VNU University of Education, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, Ha Noi, Viet Nam.

α-d-Glucose-conjugated thioureas 8a-w of substituted 4,6-diaryl-2-aminopyrimindines were designed, synthesized, and screened for their antidiabetic inhibitory activity. The thioureas with the strongest potential inhibitory activity included 8f (IC = 11.32 ± 0.

View Article and Find Full Text PDF

Anti-Mold Activities of Cationic Oligomeric Surfactants.

Langmuir

January 2025

CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Molds are persistent and harmful but receive far less research attention compared with pathogenic bacteria. With the increase in microbial resistance to single-chain surfactant antimicrobial agents, it is crucial to investigate how surfactant structures affect the antimicrobial activity of surfactants. Here, we have studied the antimold efficacy of a series of oligomeric cationic quaternary ammonium surfactants at varying oligomerization levels with or without dynamic covalent imine bonds.

View Article and Find Full Text PDF

Synthesis and diverse crystal packing in o-, m- and p-bis(carbonylthioureido)benzenes containing bisferrocenes.

Acta Crystallogr C Struct Chem

February 2025

Institute of Applied Chemistry, Shanxi University, Wucheng, Taiyuan, Shanxi 030006, People's Republic of China.

Three bisferrocene-based bis(acylthiourea) positional isomers, namely, 1,2-bis(ferrocenylcarbonylthioureido)benzene (1), 1,3-bis(ferrocenylcarbonylthioureido)benzene (2) and 1,4-bis(ferrocenylcarbonylthioureido)benzene (3), all [Fe(CH)(CHNOS)], have been synthesized via facile nucleophilic addition reactions of 2.3 equivalents of ferrocenoyl isothiocyanate with o-, m- and p-phenylenediamine, respectively. The structures of the three new synthesized isomers were fully characterized by H NMR, C NMR, IR and UV-Vis spectroscopy, elemental analyses and cyclic voltammetry.

View Article and Find Full Text PDF

Insights into the adsorption mechanisms of VOCs molecules on non-oxidized and oxidized SnO (110) monolayer: DFT analysis.

J Mol Model

January 2025

Laboratory of Nanostructures and Advanced Materials, Mechanics and Thermofluids, Faculty of Sciences and Technologies, Hassan II University of Casablanca, B.P 146, 20650, Mohammedia, Morocco.

Context: Designing efficient sensitive materials for the detection of volatile organic compounds (VOCs) such as ethanol, acetone, and benzene is stringent owing to the significant environmental and health risks induced by these compounds, in addition to their role as biomarkers for chronic diseases and food quality. This study investigates the adsorption mechanisms of VOC molecules (ethanol, acetone, and benzene) on both non-oxidized and oxidized SnO (110) monolayers and identifies the most suitable surface for gas sensing applications. For this, we examined structural properties, adsorption energies, density of states, gas responses, and recovery times.

View Article and Find Full Text PDF

The elimination of the A' unit from -type Y6-derivatives has led to the development of a new class of -benzodipyrrole (-BDP)-based A-DBD-A-type NFAs. In this work, two new A-DBD-A-type NFAs, denoted as CFB and CMB, are designed and synthesized, where electron-withdrawing fluorine atoms and electron-donating methyl groups are substituted on the benzene ring of the -BDP moiety, respectively. CFB exhibits a blue-shifted absorption spectrum, stronger intermolecular interactions, shorter π-π stacking distances, and more ordered 3D intermolecular packing in the neat and blend films, enabling it to effectively suppress charge recombination in the PM6:CFB device showing a higher PCE of 16.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!